留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑高压涡轮性能非确定的航空发动机鲁棒设计

王林 潘旭 杨锟

王林, 潘旭, 杨锟. 考虑高压涡轮性能非确定的航空发动机鲁棒设计[J]. 航空动力学报, 2024, 39(4):20230368 doi: 10.13224/j.cnki.jasp.20230368
引用本文: 王林, 潘旭, 杨锟. 考虑高压涡轮性能非确定的航空发动机鲁棒设计[J]. 航空动力学报, 2024, 39(4):20230368 doi: 10.13224/j.cnki.jasp.20230368
WANG Lin, PAN Xu, YANG Kun. Robust optimization in aero-engine design considering uncertainty of high-pressure turbine performance[J]. Journal of Aerospace Power, 2024, 39(4):20230368 doi: 10.13224/j.cnki.jasp.20230368
Citation: WANG Lin, PAN Xu, YANG Kun. Robust optimization in aero-engine design considering uncertainty of high-pressure turbine performance[J]. Journal of Aerospace Power, 2024, 39(4):20230368 doi: 10.13224/j.cnki.jasp.20230368

考虑高压涡轮性能非确定的航空发动机鲁棒设计

doi: 10.13224/j.cnki.jasp.20230368
基金项目: 国家科技重大专项(HT-J2019-Ⅰ-0006-0006)
详细信息
    作者简介:

    王林(1991-),男,工程师,博士,主要从事航空发动机优化设计研究。E-mail:wanglin1876@163.com

  • 中图分类号: V235.1

Robust optimization in aero-engine design considering uncertainty of high-pressure turbine performance

  • 摘要:

    为了降低制造过程中非确定性因素对航空发动机总体性能的影响,通过在设计阶段考虑高压涡轮性能的非确定性,构建鲁棒优化设计模型来优化总体性能的设计方案,使用蒙特卡洛仿真量化非确定性的影响,并开发了相应的全局优化算法进行求解。数值实验的结果验证了鲁棒设计模型的优势,与传统确定性设计方法相比,在高压涡轮性能非确定的情况下,鲁棒设计模型获得的方案能平均减少15.97%的总体性能离散程度,具有较优鲁棒性。

     

  • 图 1  换算流量偏差的概率密度图

    Figure 1.  Probability density distribution of converted flow deviation

    图 2  效率偏差的概率密度图

    Figure 2.  Probability density distribution of efficiency deviation

    图 3  鲁棒优化设计方法架构图

    Figure 3.  Flowchart of robust optimization design method

    图 4  累计均值与相对偏差的变化趋势图

    Figure 4.  Cumulative value of mean and relative deviation

    图 5  优化算法的全局收敛性对比

    Figure 5.  Convergence comparison of different algorithms

    图 6  不同涡轮性能参数偏差对加权耗油率的影响

    Figure 6.  Influence of different turbine performance parameter deviations on total fuel consumption rate

    图 7  不同涡轮换算流量偏差对加权耗油率的影响

    Figure 7.  Influence of different converted flow deviations on total fuel consumption rate

    图 8  不同涡轮效率偏差对加权耗油率的影响

    Figure 8.  Influence of different efficiency deviations on total fuel consumption rate

    图 9  不同性能参数偏差下目标函数均值与标准差对比

    Figure 9.  Comparison results under different performance parameter deviations

    图 10  不同换算流量偏差下目标函数均值与标准差对比

    Figure 10.  Comparison results under different converted flow deviations

    图 11  不同效率偏差下目标函数均值与标准差对比

    Figure 11.  Comparison results under different efficiency deviations

    表  1  循环参数设计范围

    Table  1.   Value range of design parameters

    循环参数 下界 上界
    $ {\pi }_{\mathrm{O}\mathrm{F}} $ 1 2
    $ {\pi }_{\mathrm{H}\mathrm{C}} $ 16 24
    $ {T}_{4}/\mathrm{K} $ 1600 2000
    $ B $ 6 12
    $ {W}_{02}/ (\mathrm{k}\mathrm{g}/\mathrm{s}) $ 150 400
    下载: 导出CSV

    表  2  各典型工况的输入参数与约束

    Table  2.   Input parameters and constraints for typical working conditions

    参数典型工况
    经济巡航高温起飞最大爬升
    高度/m10668010668
    温度/K0.78500.785
    马赫数01510
    相对湿度/%000
    功率提取/kW118.49121.92103.28
    推力要求/kN≥22.3636≥133.3584≥27.734
    耗油率权重0.620.040.34
    下载: 导出CSV

    表  3  改进麻雀搜索算法参数设置

    Table  3.   Parameters of the proposed algorithm

    算法参数取值
    麻雀数量50
    最大迭代次数100
    发现者占比0.4
    预警者占比0.2
    预警值0.55
    $ {w}_{i} $取值范围1~3
    下载: 导出CSV

    表  4  优化得到的最优设计方案

    Table  4.   Optimal design results obtained by the algorithm

    循环参数 最优值
    $ {\pi }_{\mathrm{O}\mathrm{F}} $ 1.61047
    $ {\pi }_{\mathrm{H}\mathrm{C}} $ 23.7566
    $ {T}_{4}/\mathrm{K} $ 1902.76
    $ B $ 10.8741
    $ {W}_{02}/ (\mathrm{k}\mathrm{g}/\mathrm{s}) $ 212.824
    下载: 导出CSV

    表  5  最优方案的耗油率统计分析

    Table  5.   Statistical analysis of SFC for the optimal solution

    参数 耗油率/(g/(kN·s))
    经济巡航 高温起飞 最大爬升 加权和
    均值 15.1350 6.8922 15.4819 15.0204
    标准差 0.0428 0.0334 0.0536 0.0491
    下载: 导出CSV

    表  6  高压涡轮性能非确定性参数偏差上下界取值

    Table  6.   Value range of uncertain parameters deviation %

    参数 案例序号
    1 2 3 4 5
    系数$ \mu $ −50 −25 0 25 50
    效率偏差上界 0.5 0.75 1 1.25 1.5
    效率偏差下界 −1 −1.5 −2 −2.5 −3
    换算流量偏差上界 1.5 2.25 3 3.75 4.5
    换算流量偏差下界 −2 −3 −4 −5 −6
    下载: 导出CSV

    表  7  M2方法得到的最优设计方案

    Table  7.   Optimal design results obtained by M2

    循环参数 最优值
    $ {\pi }_{\mathrm{O}\mathrm{F}} $ 1.5995
    $ {\pi }_{\mathrm{H}\mathrm{C}} $ 21.4379
    $ {T}_{4}/\mathrm{K} $ 1868.95
    $ B $ 10.2856
    $ {W}_{02}/ (\mathrm{k}\mathrm{g}/\mathrm{s}) $ 209.63
    下载: 导出CSV
  • [1] 郑新前,王钧莹,黄维娜,等. 航空发动机不确定性设计体系探讨[J]. 航空学报,2023,44(7): 6-23. ZHENG Xinqian,WANG Junying,HUANG Weina,et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica,2023,44(7): 6-23. (in Chinese

    ZHENG Xinqian, WANG Junying, HUANG Weina, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 6-23. (in Chinese)
    [2] 计自飞,韩文俊,李瑞军,等. 考虑部件不确定性的发动机性能裕度设计方法[J]. 航空发动机,2022,48(6): 34-41. JI Zifei,HAN Wenjun,LI Ruijun,et al. Determination of design margins for aeroengine performance targets considering component uncertainties[J]. Aeroengine,2022,48(6): 34-41. (in Chinese

    JI Zifei, HAN Wenjun, LI Ruijun, et al. Determination of design margins for aeroengine performance targets considering component uncertainties[J]. Aeroengine, 2022, 48(6): 34-41. (in Chinese)
    [3] BROWN H,ELGIN J A. Aircraft engine control mode analysis[J]. Journal of Engineering for Gas Turbines and Power,1985,107(4): 838-844. doi: 10.1115/1.3239820
    [4] SPIELER S,STAUDACHER S,FIOLA R,et al. Probabilistic engine performance scatter and deterioration modeling[J]. Journal of Engineering for Gas Turbines and Power,2008,130(4): 1073-1082.
    [5] 唐海龙,张坤,郭昆,等. 部件性能非确定性对涡轴发动机性能影响量化方法研究[J]. 推进技术,2015,36(8): 1143-1150. TANG Hailong,ZHANG Kun,GUO Kun,et al. Quantification method of effects of uncertainty on component performance for turbo-shaft engine performance[J]. Journal of Propulsion Technology,2015,36(8): 1143-1150. (in Chinese doi: 10.13675/j.cnki.tjjs.2015.08.004

    TANG Hailong, ZHANG Kun, GUO Kun, et al. Quantification method of effects of uncertainty on component performance for turbo-shaft engine performance[J]. Journal of Propulsion Technology, 2015, 36(8): 1143-1150. (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.08.004
    [6] TONG M T,JONES S M,ARCARA P C Jr,et al. A probabilistic assessment of NASA ultra-efficient engine technologies for a large subsonic transport: ASME Paper GT-2004-53485 [R]. Vienna,Austria: ASME,2004.
    [7] SCHUTTE J,TAI J C,SANDS J S,et al. Cycle design exploration using multi-design point approach: ASME Paper GT2012-69334 [R]. Copenhagen,Denmark: ASME,2012.
    [8] HUGHES M J,PERULLO C,MAVRIS D N. Common core engine design for multiple applications using a concurrent multi-design point approach: AIAA 2014-3443 [R]. Cleveland,US: AIAA,2014.
    [9] HENDRICKS E S. Development of an open rotor cycle model in NPSS using a multi-design point approach[R]. NASA/TM-2011-217225,2011.
    [10] 曹大录,白广忱,吕晶薇,等. 考虑多工况性能可靠性的航空发动机循环设计方法[J]. 航空动力学报,2019,34(1): 217-227. CAO Dalu,BAI Guangchen,LÜ Jingwei,et al. Aero-engine cycle design approach for multiple operating conditions performance reliability[J]. Journal of Aerospace Power,2019,34(1): 217-227. (in Chinese doi: 10.13224/j.cnki.jasp.2019.01.025

    CAO Dalu, BAI Guangchen, LÜ Jingwei, et al. Aero-engine cycle design approach for multiple operating conditions performance reliability[J]. Journal of Aerospace Power, 2019, 34(1): 217-227. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.01.025
    [11] PARKINSON A. Robust mechanical design using engineering models[J]. Journal of Mechanical Design,1995,117: 48-54.
    [12] SHOEMAKER A C,TSUI K L,WU C F. Economical experimentation methods for robust design[J]. Technometrics,1991,33(4): 415-427. doi: 10.1080/00401706.1991.10484870
    [13] PREGIBON D. Review of generalized linear models[J]. The Annals of Statistics,1984,12(4): 1589-1596.
    [14] 陈立周,翁海珊. 工程稳健优化设计[J]. 机械设计,1998,15(8): 6-9. CHEN Lizhou,WENG Haishan. Engineering robust optimal design[J]. Machine Design,1998,15(8): 6-9. (in Chinese doi: 10.3969/j.issn.1001-2354.1998.08.002

    CHEN Lizhou, WENG Haishan. Engineering robust optimal design[J]. Machine Design, 1998, 15(8): 6-9. (in Chinese) doi: 10.3969/j.issn.1001-2354.1998.08.002
    [15] MONTOMOLI F,MASSINI M,SALVADORI S. Geometrical uncertainty in turbomachinery: tip gap and fillet radius[J]. Computers & Fluids,2011,46(1): 362-368.
    [16] BAMMERT K,SANDSTEDE H. Measurements concerning the influence of surface roughness and profile changes on the performance of gas turbines[J]. Journal of Engineering for Power,1972,94(3): 207-213. doi: 10.1115/1.3445674
    [17] DUFFNER J D. The effects of manufacturing variability on turbine vane performance[D]. Cambridge,US: Massachusetts Institute of Technology,2008.
    [18] 张伟昊,邹正平,李维,等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报,2010,31(11): 2130-2138. ZHANG Weihao,ZOU Zhengping,LI Wei,et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica,2010,31(11): 2130-2138. (in Chinese

    ZHANG Weihao, ZOU Zhengping, LI Wei, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2130-2138. (in Chinese)
    [19] 唐海龙. 面向对象的航空发动机性能仿真系统及其应用[D]. 北京: 北京航空航天大学,2000. TANG Hailong. Object-oriented aeroengine performance simulation system and its application[D]. Beijing: Beijing University of Aeronautics and Astronautics,2000. (in Chinese

    TANG Hailong. Object-oriented aeroengine performance simulation system and its application[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2000. (in Chinese)
    [20] CHEN Min,TANG Hailong,ZHANG Kun,et al. Turbine-based combined cycle propulsion system integration concept design[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2013,227(7): 1068-1089. doi: 10.1177/0954410012449246
    [21] 张伟康,刘升,任春慧. 混合策略改进的麻雀搜索算法[J]. 计算机工程与应用,2021,57(24): 74-82. ZHANG Weikang,LIU Sheng,REN Chunhui. Mixed strategy improved sparrow search algorithm[J]. Computer Engineering and Applications,2021,57(24): 74-82. (in Chinese doi: 10.3778/j.issn.1002-8331.2101-0161

    ZHANG Weikang, LIU Sheng, REN Chunhui. Mixed strategy improved sparrow search algorithm[J]. Computer Engineering and Applications, 2021, 57(24): 74-82. (in Chinese) doi: 10.3778/j.issn.1002-8331.2101-0161
    [22] SCHÖNBRODT F D,PERUGINI M. At what sample size do correlations stabilize?[J]. Journal of Research in Personality,2013,47(5): 609-612. doi: 10.1016/j.jrp.2013.05.009
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  90
  • HTML浏览量:  40
  • PDF量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 网络出版日期:  2023-12-05

目录

    /

    返回文章
    返回