留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于POD的超声速尾喷焰流场时空降阶模型

孙傲 牛青林 王晓冰

孙傲, 牛青林, 王晓冰. 基于POD的超声速尾喷焰流场时空降阶模型[J]. 航空动力学报, 2024, 39(7):20230419 doi: 10.13224/j.cnki.jasp.20230419
引用本文: 孙傲, 牛青林, 王晓冰. 基于POD的超声速尾喷焰流场时空降阶模型[J]. 航空动力学报, 2024, 39(7):20230419 doi: 10.13224/j.cnki.jasp.20230419
SUN Ao, NIU Qinglin, WANG Xiaobing. Spatiotemporal reduced-order model of supersonic exhaust plume based on POD[J]. Journal of Aerospace Power, 2024, 39(7):20230419 doi: 10.13224/j.cnki.jasp.20230419
Citation: SUN Ao, NIU Qinglin, WANG Xiaobing. Spatiotemporal reduced-order model of supersonic exhaust plume based on POD[J]. Journal of Aerospace Power, 2024, 39(7):20230419 doi: 10.13224/j.cnki.jasp.20230419

基于POD的超声速尾喷焰流场时空降阶模型

doi: 10.13224/j.cnki.jasp.20230419
基金项目: 国家自然科学基金(52006203,U22B2045); 山西省回国留学人员科研资助项目(2021113)
详细信息
    作者简介:

    孙傲(1999-),男,硕士生,主要从事尾喷焰流动及光辐射高效数值计算方法研究。E-mail:sa15536309747@163.com

    通讯作者:

    牛青林(1987-),男,教授,博士,主要从事高速目标流动、传热及光辐射现象学方面的研究。E-mail:niuql@nuc.edu.cn

  • 中图分类号: V435

Spatiotemporal reduced-order model of supersonic exhaust plume based on POD

  • 摘要:

    采用大涡模拟(LES)方法计算三维非定常喷焰流场,采用低通滤波器获得流场的低频、高能量的大尺度相干结构,利用傅里叶变换和本征正交分解(POD)在尾喷焰方位角上进行空间缩减,通过在主导POD时间模态中提取傅里叶模态进行时间缩减,建立超声速尾喷焰湍流的时空降阶模型(ROM)。结果表明:低通滤波器与POD截断均可对尾喷焰的中高频、低能量的小尺度结构实现滤波;前两阶方位角模态占据了射流中80.9%的能量,且主导方位角模态下的压力POD空间模态因压缩波与激波的交互作用在射流核心区出现尖锐峰值现象;尾喷焰温度和组分的POD空间模态因复燃效应的发生在下游呈现出剧烈扰动,第2阶方位角模态的POD空间模态呈现出交替的波包结构,且具有稳定的波长;尾喷焰温度与组分的POD空间模态呈现出相似的波包结构;基于傅里叶模态能量选择的时间缩减方法不仅可以降低数值不稳定性而且重建精度高。该研究可为超声速尾喷焰流场演化规律和特征提取提供理论方法,也可为目标智能化特征工程应用提供支撑。

     

  • 图 1  时空降阶模型分析框架

    Figure 1.  Spatiotemporal reduced-order model analysis framework

    图 2  计算域与网格分布示意图

    Figure 2.  Schematic diagram of computational domain and grid distribution

    图 3  瞬态流场云图(z-x截面)

    Figure 3.  Instantaneous flow field contours (z-x cross sections)

    图 4  低通滤波下的POD模态能量分布

    Figure 4.  POD mode energy distribution under low-pass filtering

    图 5  低通滤波下的方位角模态能量分布

    Figure 5.  Azimuthal mode energy distribution under low-pass filtering

    图 6  m=0的第1、5、10阶时间模态的实部分量

    Figure 6.  Real component of the 1st,5th and 10th chronos for the m=0 mode

    图 7  m=0的第1、5、10阶时间模态的功率谱密度

    Figure 7.  Power spectral density of the 1st,5th and 10th chronos of for the m=0 mode

    图 8  m=0方位角模态下前三阶POD空间模态云图

    Figure 8.  Contours of the first three POD spatial modes under m=0 azimuthal mode

    图 9  m=1方位角模态下前三阶POD空间模态云图

    Figure 9.  Contours of the first three POD spatial modes under m=1 azimuthal mode

    图 10  Ritz特征值分布

    Figure 10.  Ritz eigenvalue distribution

    图 11  原始、重构时间模态(m=1)

    Figure 11.  Ritz eigenvalue distribution (m=1)

    图 12  tROM的重构误差随傅里叶模态数的关系

    Figure 12.  Reconstruction error of tROM as a function of the number of Fourier modes

    图 13  N=F=50时前M个方位角模态总和的能量误差

    Figure 13.  Energy error of the sum of the first M azimuthal modes when N=F=50

    图 14  原始流场、重建流场以及误差流场的压力和温度分布

    Figure 14.  Pressure and temperature distributions of the original flow field, reconstructed flow field, and error flow field

    表  1  发动机喷口流场摩尔分数

    Table  1.   Flow parameters of nozzle exit

    H2O CO2 CO N2 H2 OH HCl
    0.4 0.136 0.115 0.1 0.06 0.05 0.19
    下载: 导出CSV

    表  2  时空缩减误差对比

    Table  2.   Comparison of errors in spatio-temporal reduction

    模态截断
    占比K/Kall
    本文重构
    误差/%
    参考文献
    重构误差/%
    1/3 1.5 20.0
    1/30 9.3 30.0
    1/220 22.0 60.0
    下载: 导出CSV
  • [1] 牛青林,傅德彬,李霞. 不同飞行状态下固体火箭发动机尾喷焰数值研究[J]. 航空动力学报,2015,30(7): 1745-1751. NIU Qinglin,FU Debin,LI Xia. Numerical study on the plumes of solid rocket motor under various flight conditions[J]. Journal of Aerospace Power,2015,30(7): 1745-1751. (in Chinese

    NIU Qinglin, FU Debin, LI Xia. Numerical study on the plumes of solid rocket motor under various flight conditions[J]. Journal of Aerospace Power, 2015, 30(7): 1745-1751. (in Chinese)
    [2] 王志博,宋兆龙,张彪,等. 固发羽流流场及辐射特性随飞行状态的变化规律[J]. 东南大学学报(自然科学版),2021,51(6): 1040-1048. WANG Zhibo,SONG Zhaolong,ZHANG Biao,et al. Variation law of flow field and radiation characteristics of solid plume with flight state[J]. Journal of Southeast University (Natural Science Edition),2021,51(6): 1040-1048. (in Chinese

    WANG Zhibo, SONG Zhaolong, ZHANG Biao, et al. Variation law of flow field and radiation characteristics of solid plume with flight state[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(6): 1040-1048. (in Chinese)
    [3] 周强,廖海黎,曹曙阳. 高雷诺数下方柱绕流特性的数值模拟[J]. 西南交通大学学报,2018,53(3): 533-539. ZHOU Qiang,LIAO Haili,CAO Shuyang. Numerical study of flow characteristics around square cylinder at high Reynolds number[J]. Journal of Southwest Jiaotong University,2018,53(3): 533-539. (in Chinese

    ZHOU Qiang, LIAO Haili, CAO Shuyang. Numerical study of flow characteristics around square cylinder at high Reynolds number[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 533-539. (in Chinese)
    [4] GOSS L P,KATTA V R,ROQUEMORE W M. Simulation of vortical structures in a jet diffusion flame[J]. International Journal of Numerical Methods for Heat & Fluid Flow,1994,4(5): 413-424.
    [5] 王梓伊,张伟伟,刘磊,等. 适用于复杂流动的热气动弹性降阶建模方法[J]. 航空学报,2023,44(4): 185-197. WANG Ziyi,ZHANG Weiwei,LIU Lei,et al. Reduced order aerothermoelastic framework suitable for complex flow[J]. Acta Aeronautica et Astronautica Sinica,2023,44(4): 185-197. (in Chinese

    WANG Ziyi, ZHANG Weiwei, LIU Lei, et al. Reduced order aerothermoelastic framework suitable for complex flow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 185-197. (in Chinese)
    [6] LUMLEY J L. The structure of inhomogeneous turbulent flows[C]// Atmospheric turbulence and radio wave propagation. Moscow: Nauka,1967: 166-178.
    [7] 王军辉,田书玲. 基于本征正交分解的并列双圆柱绕流尾流场分析[J]. 气体物理,2023,8(4): 46-54. WANG Junhui,TIAN Shuling. Proper orthogonal decomposition of flow past parallel twin cylinders[J]. Physics of Gases,2023,8(4): 46-54. (in Chinese

    WANG Junhui, TIAN Shuling. Proper orthogonal decomposition of flow past parallel twin cylinders[J]. Physics of Gases, 2023, 8(4): 46-54. (in Chinese)
    [8] 孙翀,田甜,竺晓程,等. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报,2022,56(1): 45-52. SUN Chong,TIAN Tian,ZHU Xiaocheng,et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University,2022,56(1): 45-52. (in Chinese

    SUN Chong, TIAN Tian, ZHU Xiaocheng, et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 45-52. (in Chinese)
    [9] DUWIG C,IUDICIANI P. Extended proper orthogonal decomposition for analysis of unsteady flames[J]. Flow,Turbulence and Combustion,2010,84(1): 25-47. doi: 10.1007/s10494-009-9210-6
    [10] 余志健,杨旸. 部分预混燃烧室热声不稳定及火焰结构实验分析[J]. 航空动力学报,2022,37(12): 2851-2864. YU Zhijian,YANG Yang. Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor[J]. Journal of Aerospace Power,2022,37(12): 2851-2864. (in Chinese

    YU Zhijian, YANG Yang. Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor[J]. Journal of Aerospace Power, 2022, 37(12): 2851-2864. (in Chinese)
    [11] 魏为,许全宏,苏童,等. 不同气量分配下声激励对中心分级旋流火焰动力学的影响[J]. 航空动力学报,2022,37(8): 1607-1619. WEI Wei,XU Quanhong,SU Tong,et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power,2022,37(8): 1607-1619. (in Chinese

    WEI Wei, XU Quanhong, SU Tong, et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power, 2022, 37(8): 1607-1619. (in Chinese)
    [12] WEIGHTMAN J L,AMILI O,HONNERY D,et al. Signatures of shear-layer unsteadiness in proper orthogonal decomposition[J]. Experiments in Fluids,2018,59(12): 180. doi: 10.1007/s00348-018-2639-4
    [13] LUO Wenguo,WEI Yuqing,DAI Ke,et al. Spatiotemporal characterization and suppression mechanism of supersonic inlet buzz with proper orthogonal decomposition method[J]. Energies,2020,13(1): 217. doi: 10.3390/en13010217
    [14] 牛青林. 连续流域高速目标辐射现象学研究[D]. 哈尔滨: 哈尔滨工业大学,2019. NIU Qinglin. Phenomenology study on high-speed target radiation in continuous-flow regime[D]. Harbin: Harbin Institute of Technology,2019. (in Chinese

    NIU Qinglin. Phenomenology study on high-speed target radiation in continuous-flow regime[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [15] 蒋利杰,张人会,陈学炳,等. 基于模态分解的液环泵喷射器内非定常流动分析[J]. 农业工程学报,2022,38(21): 16-23. JIANG Lijie,ZHANG Renhui,CHEN Xuebing,et al. Unsteady flow in liquid ring pump ejector using mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(21): 16-23. (in Chinese

    JIANG Lijie, ZHANG Renhui, CHEN Xuebing, et al. Unsteady flow in liquid ring pump ejector using mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(21): 16-23. (in Chinese)
    [16] CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Current Science,2000,78(7): 808-817.
    [17] TAIRA K,BRUNTON S L,DAWSON S T M,et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal,2017,55(12): 4013-4041. doi: 10.2514/1.J056060
    [18] BEN-ISRAEL A,GREVILLE T N E. Generalized inverses: theory and applications[M]. 2nd ed. New York: Springer,2003.
    [19] AVITAL G,COHEN Y,GAMSS L,et al. Experimental and computational study of infrared emission from underexpanded rocket exhaust plumes[J]. Journal of Thermophysics and Heat Transfer,2001,15(4): 377-383. doi: 10.2514/2.6629
    [20] 张彭俊燚. 可压缩剪切湍流的时空特性及噪声[D]. 合肥: 中国科学技术大学,2022. ZHANG Pengjunyi. Space-time characteristics and noise of compressible turbulent shear flow[D]. Hefei: University of Science and Technology of China,2022. (in Chinese

    ZHANG Pengjunyi. Space-time characteristics and noise of compressible turbulent shear flow[D]. Hefei: University of Science and Technology of China, 2022. (in Chinese)
    [21] ALOMAR A,NICOLE A,SIPP D,et al. Reduced-order model of a reacting,turbulent supersonic jet based on proper orthogonal decomposition[J]. Theoretical and Computational Fluid Dynamics,2020,34(1): 49-77.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  90
  • HTML浏览量:  33
  • PDF量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 网络出版日期:  2024-03-05

目录

    /

    返回文章
    返回