Spatiotemporal reduced-order model of supersonic exhaust plume based on POD
-
摘要:
采用大涡模拟(LES)方法计算三维非定常喷焰流场,采用低通滤波器获得流场的低频、高能量的大尺度相干结构,利用傅里叶变换和本征正交分解(POD)在尾喷焰方位角上进行空间缩减,通过在主导POD时间模态中提取傅里叶模态进行时间缩减,建立超声速尾喷焰湍流的时空降阶模型(ROM)。结果表明:低通滤波器与POD截断均可对尾喷焰的中高频、低能量的小尺度结构实现滤波;前两阶方位角模态占据了射流中80.9%的能量,且主导方位角模态下的压力POD空间模态因压缩波与激波的交互作用在射流核心区出现尖锐峰值现象;尾喷焰温度和组分的POD空间模态因复燃效应的发生在下游呈现出剧烈扰动,第2阶方位角模态的POD空间模态呈现出交替的波包结构,且具有稳定的波长;尾喷焰温度与组分的POD空间模态呈现出相似的波包结构;基于傅里叶模态能量选择的时间缩减方法不仅可以降低数值不稳定性而且重建精度高。该研究可为超声速尾喷焰流场演化规律和特征提取提供理论方法,也可为目标智能化特征工程应用提供支撑。
Abstract:Large eddy simulation (LES) was used to compute the three-dimensional unsteady plume flow field. Low-frequency and high-energy large-scale coherent structures in the flow field were extracted by using low-pass filters. Spatial reduction was achieved by Fourier transform and proper orthogonal decomposition (POD) in the azimuthal direction of the plume, while temporal reduction was achieved by extracting the Fourier mode from the leading temporal POD mode. Consequently, a spatiotemporal reduced-order model (ROM) for supersonic plume reaction turbulence was established. The results demonstrated that low-pass filters and POD truncation can successfully filter high-frequency and low-energy small-scale structures in the supersonic plume. The first two azimuthal modes accounted for 80.9% of the energy in the plume. In the dominant azimuthal mode, the pressure POD spatial mode showed sharp peaks in the core region of the jet due to the interaction between compression wave and shock wave. Furthermore, POD spatial modes of the component and temperature exhibited sharp disturbances downstream because of afterburning. An alternating wave packet structure with a steady wavelength was displayed in the POD spatial mode under the second-order azimuthal mode. The POD spatial mode of both components and temperature showed a similar wave packet structure. In addition to reducing numerical instability, temporal reduction based on Fourier mode energy selection guaranteed excellent reconstruction accuracy. This research can support target intelligent feature engineering applications by offering theoretical techniques for evolution laws and feature extraction on supersonic rocket exhaust plumes.
-
表 1 发动机喷口流场摩尔分数
Table 1. Flow parameters of nozzle exit
H2O CO2 CO N2 H2 OH HCl 0.4 0.136 0.115 0.1 0.06 0.05 0.19 表 2 时空缩减误差对比
Table 2. Comparison of errors in spatio-temporal reduction
模态截断
占比K/Kall本文重构
误差/%参考文献
重构误差/%1/3 1.5 20.0 1/30 9.3 30.0 1/220 22.0 60.0 -
[1] 牛青林,傅德彬,李霞. 不同飞行状态下固体火箭发动机尾喷焰数值研究[J]. 航空动力学报,2015,30(7): 1745-1751. NIU Qinglin,FU Debin,LI Xia. Numerical study on the plumes of solid rocket motor under various flight conditions[J]. Journal of Aerospace Power,2015,30(7): 1745-1751. (in ChineseNIU Qinglin, FU Debin, LI Xia. Numerical study on the plumes of solid rocket motor under various flight conditions[J]. Journal of Aerospace Power, 2015, 30(7): 1745-1751. (in Chinese) [2] 王志博,宋兆龙,张彪,等. 固发羽流流场及辐射特性随飞行状态的变化规律[J]. 东南大学学报(自然科学版),2021,51(6): 1040-1048. WANG Zhibo,SONG Zhaolong,ZHANG Biao,et al. Variation law of flow field and radiation characteristics of solid plume with flight state[J]. Journal of Southeast University (Natural Science Edition),2021,51(6): 1040-1048. (in ChineseWANG Zhibo, SONG Zhaolong, ZHANG Biao, et al. Variation law of flow field and radiation characteristics of solid plume with flight state[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(6): 1040-1048. (in Chinese) [3] 周强,廖海黎,曹曙阳. 高雷诺数下方柱绕流特性的数值模拟[J]. 西南交通大学学报,2018,53(3): 533-539. ZHOU Qiang,LIAO Haili,CAO Shuyang. Numerical study of flow characteristics around square cylinder at high Reynolds number[J]. Journal of Southwest Jiaotong University,2018,53(3): 533-539. (in ChineseZHOU Qiang, LIAO Haili, CAO Shuyang. Numerical study of flow characteristics around square cylinder at high Reynolds number[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 533-539. (in Chinese) [4] GOSS L P,KATTA V R,ROQUEMORE W M. Simulation of vortical structures in a jet diffusion flame[J]. International Journal of Numerical Methods for Heat & Fluid Flow,1994,4(5): 413-424. [5] 王梓伊,张伟伟,刘磊,等. 适用于复杂流动的热气动弹性降阶建模方法[J]. 航空学报,2023,44(4): 185-197. WANG Ziyi,ZHANG Weiwei,LIU Lei,et al. Reduced order aerothermoelastic framework suitable for complex flow[J]. Acta Aeronautica et Astronautica Sinica,2023,44(4): 185-197. (in ChineseWANG Ziyi, ZHANG Weiwei, LIU Lei, et al. Reduced order aerothermoelastic framework suitable for complex flow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 185-197. (in Chinese) [6] LUMLEY J L. The structure of inhomogeneous turbulent flows[C]// Atmospheric turbulence and radio wave propagation. Moscow: Nauka,1967: 166-178. [7] 王军辉,田书玲. 基于本征正交分解的并列双圆柱绕流尾流场分析[J]. 气体物理,2023,8(4): 46-54. WANG Junhui,TIAN Shuling. Proper orthogonal decomposition of flow past parallel twin cylinders[J]. Physics of Gases,2023,8(4): 46-54. (in ChineseWANG Junhui, TIAN Shuling. Proper orthogonal decomposition of flow past parallel twin cylinders[J]. Physics of Gases, 2023, 8(4): 46-54. (in Chinese) [8] 孙翀,田甜,竺晓程,等. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报,2022,56(1): 45-52. SUN Chong,TIAN Tian,ZHU Xiaocheng,et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University,2022,56(1): 45-52. (in ChineseSUN Chong, TIAN Tian, ZHU Xiaocheng, et al. Analysis of POD and EPOD for unsteady flow field of wind turbine airfoil[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 45-52. (in Chinese) [9] DUWIG C,IUDICIANI P. Extended proper orthogonal decomposition for analysis of unsteady flames[J]. Flow,Turbulence and Combustion,2010,84(1): 25-47. doi: 10.1007/s10494-009-9210-6 [10] 余志健,杨旸. 部分预混燃烧室热声不稳定及火焰结构实验分析[J]. 航空动力学报,2022,37(12): 2851-2864. YU Zhijian,YANG Yang. Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor[J]. Journal of Aerospace Power,2022,37(12): 2851-2864. (in ChineseYU Zhijian, YANG Yang. Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor[J]. Journal of Aerospace Power, 2022, 37(12): 2851-2864. (in Chinese) [11] 魏为,许全宏,苏童,等. 不同气量分配下声激励对中心分级旋流火焰动力学的影响[J]. 航空动力学报,2022,37(8): 1607-1619. WEI Wei,XU Quanhong,SU Tong,et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power,2022,37(8): 1607-1619. (in ChineseWEI Wei, XU Quanhong, SU Tong, et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power, 2022, 37(8): 1607-1619. (in Chinese) [12] WEIGHTMAN J L,AMILI O,HONNERY D,et al. Signatures of shear-layer unsteadiness in proper orthogonal decomposition[J]. Experiments in Fluids,2018,59(12): 180. doi: 10.1007/s00348-018-2639-4 [13] LUO Wenguo,WEI Yuqing,DAI Ke,et al. Spatiotemporal characterization and suppression mechanism of supersonic inlet buzz with proper orthogonal decomposition method[J]. Energies,2020,13(1): 217. doi: 10.3390/en13010217 [14] 牛青林. 连续流域高速目标辐射现象学研究[D]. 哈尔滨: 哈尔滨工业大学,2019. NIU Qinglin. Phenomenology study on high-speed target radiation in continuous-flow regime[D]. Harbin: Harbin Institute of Technology,2019. (in ChineseNIU Qinglin. Phenomenology study on high-speed target radiation in continuous-flow regime[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [15] 蒋利杰,张人会,陈学炳,等. 基于模态分解的液环泵喷射器内非定常流动分析[J]. 农业工程学报,2022,38(21): 16-23. JIANG Lijie,ZHANG Renhui,CHEN Xuebing,et al. Unsteady flow in liquid ring pump ejector using mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(21): 16-23. (in ChineseJIANG Lijie, ZHANG Renhui, CHEN Xuebing, et al. Unsteady flow in liquid ring pump ejector using mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(21): 16-23. (in Chinese) [16] CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Current Science,2000,78(7): 808-817. [17] TAIRA K,BRUNTON S L,DAWSON S T M,et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal,2017,55(12): 4013-4041. doi: 10.2514/1.J056060 [18] BEN-ISRAEL A,GREVILLE T N E. Generalized inverses: theory and applications[M]. 2nd ed. New York: Springer,2003. [19] AVITAL G,COHEN Y,GAMSS L,et al. Experimental and computational study of infrared emission from underexpanded rocket exhaust plumes[J]. Journal of Thermophysics and Heat Transfer,2001,15(4): 377-383. doi: 10.2514/2.6629 [20] 张彭俊燚. 可压缩剪切湍流的时空特性及噪声[D]. 合肥: 中国科学技术大学,2022. ZHANG Pengjunyi. Space-time characteristics and noise of compressible turbulent shear flow[D]. Hefei: University of Science and Technology of China,2022. (in ChineseZHANG Pengjunyi. Space-time characteristics and noise of compressible turbulent shear flow[D]. Hefei: University of Science and Technology of China, 2022. (in Chinese) [21] ALOMAR A,NICOLE A,SIPP D,et al. Reduced-order model of a reacting,turbulent supersonic jet based on proper orthogonal decomposition[J]. Theoretical and Computational Fluid Dynamics,2020,34(1): 49-77.