留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双旋流全环燃烧室的出口温度分布试验研究

门玉宾 郑龙席 柴昕 张燚 张宝华 马宏宇

门玉宾, 郑龙席, 柴昕, 等. 基于双旋流全环燃烧室的出口温度分布试验研究[J]. 航空动力学报, 2024, 39(6):20230423 doi: 10.13224/j.cnki.jasp.20230423
引用本文: 门玉宾, 郑龙席, 柴昕, 等. 基于双旋流全环燃烧室的出口温度分布试验研究[J]. 航空动力学报, 2024, 39(6):20230423 doi: 10.13224/j.cnki.jasp.20230423
MEN Yubin, ZHENG Longxi, CHAI Xin, et al. Experimental study on the outlet temperature distribution of double swirler combustor[J]. Journal of Aerospace Power, 2024, 39(6):20230423 doi: 10.13224/j.cnki.jasp.20230423
Citation: MEN Yubin, ZHENG Longxi, CHAI Xin, et al. Experimental study on the outlet temperature distribution of double swirler combustor[J]. Journal of Aerospace Power, 2024, 39(6):20230423 doi: 10.13224/j.cnki.jasp.20230423

基于双旋流全环燃烧室的出口温度分布试验研究

doi: 10.13224/j.cnki.jasp.20230423
基金项目: 国家两机专项项目
详细信息
    作者简介:

    门玉宾(1985-),男,高级工程师,博士生,主要从事航空发动机燃烧室技术研究。E-mail:616588057@qq.com

  • 中图分类号: V231.1

Experimental study on the outlet temperature distribution of double swirler combustor

  • 摘要:

    以双旋流全环燃烧室为试验对象,分别在高温高压、高温中压和发动机整机条件下开展试验研究。分别设计了带有环腔引气和模拟型喷嘴等模拟发动机边界条件的试验方案,并分析不同试验条件下的出口温度分布规律。试验结果表明:中、高压试验条件下的出口温度分布规律基本一致,热点区域基本一致;中压试验周向出口温度分布水平明显优于高压试验;高压试验温度分布曲线呈中心波峰形式,而中压试验中心波峰形式不明显。设计的高压试验出口温度分布规律和数值更接近发动机整机测试结果,设计的中压试验出口温度分布数值与高压试验相比存在一个比例系数,系数为1.3~1.4。

     

  • 图 1  燃烧室中压试验原理图[35]

    1 直接加温器;2 标准空气流量计;3 进口补气管;4 电动阀门;5 试验件;6 出口测量段;7 调压电动阀门;8 再热器;9 排气消声装置。

    Figure 1.  Schematic diagram of combustor medium pressure experiment equipment[35]

    图 2  燃烧室中压试验实物图

    Figure 2.  Physical drawing of combustor medium pressure experiment equipment

    图 3  燃烧室高压试验原理图

    Figure 3.  Schematic diagram of combustor high pressure equipment

    图 4  燃烧室高压试验实物图

    Figure 4.  Physical drawing of combustor high pressure experiment equipment

    图 5  发动机试验原理图[36]

    Figure 5.  Schematic diagram of engine experiment [36]

    图 6  涡轮叶片测点示意图(出口温度测点位置)[36]

    Figure 6.  Schematic diagram of turbine blade measuring point (outlet temperature measuring point position)[36]

    图 7  热电偶实物图

    Figure 7.  Diagram of the thermocouple

    图 8  燃烧室模型示意图

    Figure 8.  Schematic diagram of combustion chamber model

    图 9  出口温度分布云图

    Figure 9.  Contours of outlet temperature distribution

    图 10  高压出口温度分布一维曲线图

    Figure 10.  One-dimensional curve of high pressure outlet temperature distribution

    图 11  中压出口温度分布一维曲线图

    Figure 11.  One-dimensional curve of medium pressure outlet temperature distribution

    表  1  主要测点误差

    Table  1.   Main measurement accuracy

    测量参数 测量范围 测量误差/%
    进口温度/℃ 0~1000 0.5
    进口压力/MPa 0~5 0.1
    进口空气流量/(kg/s) 10~100 1.5
    外环引气量/(kg/s) 1~8 1
    内环引气量/(kg/s) 1~8 1
    出口温度/℃ 0~1800 0.5
    燃油流量/(kg/s) 0.2~3 0.5
    环境压力/kPa 95~105 0.4
    下载: 导出CSV

    表  2  试验相对误差

    Table  2.   Experimental relative deviation

    试验状态 试验数据 Δδ0 δδ0)/%
    1 1-1 ±0.010 ±4.2
    1-2 ±0.010 ±4.1
    2 2-1 ±0.010 ±4.4
    2-2 ±0.010 ±4.0
    3 3-1 ±0.010 ±3.9
    3-2 ±0.010 ±4.0
    4 4-1 ±0.010 ±3.9
    4-2 ±0.010 ±4.1
    下载: 导出CSV

    表  3  发动机试验条件下的出口温度分布值

    Table  3.   Outlet temperature distribution value of the engine experiment

    试验状态 t4t3)/℃ δ0 N2r/%
    1 510 0.893a 66.01
    2 579 0.333a 81.52
    3 818 0.263a 91.54
    4 910 0.260a 95.83
    5 931 0.255a 96.9
    6 939 0.247a 97.13
    7 941 0.248a 97.13
    8 939 0.260a 97.26
    9 939 0.247a 97.21
    10 939 0.257a 97.25
    下载: 导出CSV

    表  4  不同测试条件下的出口温度分布值

    Table  4.   Outlet temperature distribution value of different testers

    出口温度分布值 中压试验 高压试验 整机试验
    δ0 0.22b 0.30b 0.29b
    σt4ave 25 44 36
    σt4max 37 58 44
    下载: 导出CSV
  • [1] 丁国玉,何小民,赵自强,等. 油气比及进口参数对三级旋流器燃烧室性能的影响[J]. 航空动力学报,2015,30(1): 53-58. DING Guoyu,HE Xiaomin,ZHAO Ziqiang,et al. Effect of fuel-air ratio and inlet parameters on performance of triple swirler combustor[J]. Journal of Aerospace Power,2015,30(1): 53-58. (in Chinese

    DING Guoyu, HE Xiaomin, ZHAO Ziqiang, et al. Effect of fuel-air ratio and inlet parameters on performance of triple swirler combustor[J]. Journal of Aerospace Power, 2015, 30(1): 53-58. (in Chinese)
    [2] 林宇震,许全宏,刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社,2008. LIN Yuzhen,XU Quanhong,LIU Gaoen. Cas turbine combustor[M]. Beijing: National Defense Industry Press,2008. (in Chinese

    LIN Yuzhen, XU Quanhong, LIU Gaoen. Cas turbine combustor[M]. Beijing: National Defense Industry Press, 2008. (in Chinese)
    [3] 邓明. 航空燃气涡轮发动机原理与构造[M]. 北京: 国防工业出版社,2008. DENG Ming. Principle and construction of aviation gas turbine engine[M]. Beijing: National Defense Industry Press,2008. (in Chinese

    DENG Ming. Principle and construction of aviation gas turbine engine[M]. Beijing: National Defense Industry Press, 2008. (in Chinese)
    [4] 金如山,索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社,2016. JIN Rushan,SUO Jianqin. Advanced gas turbine combustor[M]. Beijing: Aviation Industry Press,2016. (in Chinese

    JIN Rushan, SUO Jianqin. Advanced gas turbine combustor[M]. Beijing: Aviation Industry Press, 2016. (in Chinese)
    [5] BAHR D W. Technology for the design of high temperature rise combustors[J]. Journal of Propulsion and Power,1987,3(2): 179-186. doi: 10.2514/3.22971
    [6] MCKINNEY R,CHEUNG A,SOWA W,et al. The PW TALON X low emissions combustor: revolutionary results with evolutionary technology[R]. Reno: 45th Aerospace Sciences Meeting,2007.
    [7] MOHAMMAD B S,JENG S M. Design procedures and a developed computer code for preliminary single annular combustor design[R]. AIAA-2009-5208,2009.
    [8] 张宝诚. 航空发动机试验和测试技术[M]. 北京: 北京航空航天大学出版社,2005. ZHANG Baocheng. Aero-engine test and testing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2005. (in Chinese

    ZHANG Baocheng. Aero-engine test and testing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005. (in Chinese)
    [9] MAURYA D,JAYAPRAKASH G N,BADARINATH C. Challenges in aero gas turbine combustor development[R]. ASME 2000-GT-59429,2000.
    [10] LEFEBVRE A H. Gas turbine combustion[M]. 2nd ed. Philadelphia: Taylor & Francis,1999.
    [11] 金如山. 航空燃气轮机燃烧室[M]. 北京: 宇航出版社,1988.
    [12] KOUPPER C,GICQUEL L,DUCHAINE F,et al. Experimental and numerical calculation of turbulent timescales at the exit of an engine representative combustor simulator[J]. Journal of Engineering for Gas Turbines and Power,2016,138(2): 021503. doi: 10.1115/1.4031262
    [13] KOUPPER C,GICQUEL L,DUCHAINE F,et al. Advanced combustor exit plane temperature diagnostics based on large eddy simulations[J]. Flow,Turbulence and Combustion,2015,95(1): 79-96. doi: 10.1007/s10494-015-9607-3
    [14] KOUPPER C,CACIOLLI G,GICQUEL L,et al. Development of an engine representative combustor simulator dedicated to hot streak generation[J]. Journal of Turbomachinery,2014,136(11): 111007. doi: 10.1115/1.4028175
    [15] ZHANG M,WU H,WANG H. Numerical prediction of NOx emission and exit temperature pattern in a model staged lean premixed prevaporized combustor[R]. ASME Paper 2013-GT-95235,2013.
    [16] SHANG Mingtao,LU Shuqiang,MAO Ronghai. Numerical investigation of the effects of dilution hole geometry on the exit temperature profile and emissions of an aero-engine LPP combustor[R]. ASME Paper 2013-GT-95395,2013.
    [17] TAO W J,WANG J,MAO R H,et al. Generation and migration of hot streaks within an LPP combustor[R]. Phoenix: Proceedings of the ASME Turbo Expo,2019.
    [18] 莫妲,程明,万斌,等. 三旋流燃烧室的数值模拟与试验[J]. 航空动力学报,2017,32(11): 2568-2575. MO Da,CHENG Ming,WAN Bin,et al. Numerical simulation and experiment of triple swirler combustor[J]. Journal of Aerospace Power,2017,32(11): 2568-2575. (in Chinese

    MO Da, CHENG Ming, WAN Bin, et al. Numerical simulation and experiment of triple swirler combustor[J]. Journal of Aerospace Power, 2017, 32(11): 2568-2575. (in Chinese)
    [19] 郑顺,王成军. 掺混孔对中心分级燃烧室出口特性分析的数值模拟[J]. 科学技术与工程,2020,20(33): 13892-13896. ZHENG Shun,WANG Chengjun. Numerical simulation of influence of dilution holes on the outlet characteristics of central stage combustor[J]. Science Technology and Engineering,2020,20(33): 13892-13896. (in Chinese doi: 10.3969/j.issn.1671-1815.2020.33.054

    ZHENG Shun, WANG Chengjun. Numerical simulation of influence of dilution holes on the outlet characteristics of central stage combustor[J]. Science Technology and Engineering, 2020, 20(33): 13892-13896. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.33.054
    [20] AHMED M,KADY A M. Experimental investigation of aerodynamic combustion and emissions characteristics within the primary zone of a gas turbine combustor[D]. Cincinnati: University of Cincinnati,2005.
    [21] ELKADY A,JENG S M,MONGIA H. The influence of primary air jets on flow and pollutant emissions characteristics within a model gas turbine combustor[R]. AIAA-2006-544,2006.
    [22] LISCINSKY D,TRUE B,VRANOS A,et al. Experimental study of cross-stream mixing in a rectangular duct: AIAA 1992-3090 [R]. Reston,Virigina: AIAA,1992.
    [23] 王志超,韩猛,王建臣,等. 限制域对中心分级燃烧室出口温度分布的影响[J]. 工程热物理学报,2022,43(1): 240-250. WANG Zhichao,HAN Meng,WANG Jianchen,et al. Effect of confinement on exit temperature distribution of centrally staged combustor[J]. Journal of Engineering Thermophysics,2022,43(1): 240-250. (in Chinese

    WANG Zhichao, HAN Meng, WANG Jianchen, et al. Effect of confinement on exit temperature distribution of centrally staged combustor[J]. Journal of Engineering Thermophysics, 2022, 43(1): 240-250. (in Chinese)
    [24] 梁志鹏,林宇震,许全宏,等. 进口流场畸变对回流燃烧室出口温度分布的影响[J]. 航空动力学报,2016,31(5): 1142-1148. LIANG Zhipeng,LIN Yuzhen,XU Quanhong,et al. Effects of inlet velocity distortion on outlet temperature distribution of a reverse-flow combustor[J]. Journal of Aerospace Power,2016,31(5): 1142-1148. (in Chinese

    LIANG Zhipeng, LIN Yuzhen, XU Quanhong, et al. Effects of inlet velocity distortion on outlet temperature distribution of a reverse-flow combustor[J]. Journal of Aerospace Power, 2016, 31(5): 1142-1148. (in Chinese)
    [25] 刘凯,王峻宁,曾文,等. 掺混孔结构对燃烧室性能影响研究[J]. 热能动力工程,2022,37(7): 64-69,92. LIU Kai,WANG Junning,ZENG Wen,et al. Research on effect of dilution holes structures on combustor performance[J]. Journal of Engineering for Thermal Energy and Power,2022,37(7): 64-69,92. (in Chinese

    LIU Kai, WANG Junning, ZENG Wen, et al. Research on effect of dilution holes structures on combustor performance[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(7): 64-69, 92. (in Chinese)
    [26] 刘爱虢,李昱泽,杨宇东,等. 微型燃气轮机燃烧室燃烧特性实验[J]. 航空动力学报,2020,35(6): 1335-1344. LIU Aiguo,LI Yuze,YANG Yudong,et al. Experiment on combustion characteristics of micro gas turbine combustor[J]. Journal of Aerospace Power,2020,35(6): 1335-1344. (in Chinese

    LIU Aiguo, LI Yuze, YANG Yudong, et al. Experiment on combustion characteristics of micro gas turbine combustor[J]. Journal of Aerospace Power, 2020, 35(6): 1335-1344. (in Chinese)
    [27] 刘重阳,许振宇,黄安,等. 基于波长调制技术的燃烧室出口温度分布TDLAT测试方法[J]. 航空动力学报,2023,38(1): 116-126. LIU Chongyang,XU Zhenyu,HUANG An,et al. TDLAT measurement method for outlet temperature profile of combustor based on wavelength modulation spectroscopy technology[J]. Journal of Aerospace Power,2023,38(1): 116-126. (in Chinese

    LIU Chongyang, XU Zhenyu, HUANG An, et al. TDLAT measurement method for outlet temperature profile of combustor based on wavelength modulation spectroscopy technology[J]. Journal of Aerospace Power, 2023, 38(1): 116-126. (in Chinese)
    [28] BACCI T,CACIOLLI G,FACCHINI B,et al. Flowfield and temperature profiles measurements on a combustor simulator dedicated to hot streaks generation[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition,2015.
    [29] LIU Cunxi,LIU Fuqiang,YANG Jinhu,et al. Investigations of the effects of spray characteristics on the flame pattern and combustion stability of a swirl-cup combustor[J]. Fuel,2015,139: 529-536. doi: 10.1016/j.fuel.2014.08.072
    [30] 蔡文哲,代威,薛鑫,等. 掺混孔结构对大曲率受限空间出口温度分布的影响[J]. 推进技术,2022,43(3): 216-223. CAI Wenzhe,DAI Wei,XUE Xin,et al. Effects of dilution hole structure on exit temperature distribution characteristic in large curvature limited space[J]. Journal of Propulsion Technology,2022,43(3): 216-223. (in Chinese

    CAI Wenzhe, DAI Wei, XUE Xin, et al. Effects of dilution hole structure on exit temperature distribution characteristic in large curvature limited space[J]. Journal of Propulsion Technology, 2022, 43(3): 216-223. (in Chinese)
    [31] 陈忠良,贾立超,何悟. 壁面效应对燃烧室多头部试验出口温度场均匀性影响分析[R]. 南京: 第五届空天动力联合会,2020.
    [32] 邹运,万斌,胡迎明,等. 测温方法对高温升燃烧室温度场试验结果影响分析[J]. 航空发动机,2020,46(5): 92-96. ZOU Yun,WAN Bin,HU Yingming,et al. Influence of temperature measurement method on temperature field test results of high temperature rise combustor[J]. Aeroengine,2020,46(5): 92-96. (in Chinese

    ZOU Yun, WAN Bin, HU Yingming, et al. Influence of temperature measurement method on temperature field test results of high temperature rise combustor[J]. Aeroengine, 2020, 46(5): 92-96. (in Chinese)
    [33] 杨思恒,王建臣,张弛,等. 三头部中心分级燃烧室出口温度分布研究[J]. 工程热物理学报,2021,42(10): 2737-2748. YANG Siheng,WANG Jianchen,ZHANG Chi,et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics,2021,42(10): 2737-2748. (in Chinese

    YANG Siheng, WANG Jianchen, ZHANG Chi, et al. Investigation on outlet temperature distribution of a three-sector centrally staged combustor[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2737-2748. (in Chinese)
    [34] 何悟. 环形燃烧室出口温度场优化方法研究[R]. 成都: 第六届空天动力联合会,2022.
    [35] 赵明龙,杨志民,林宇震,等. 单头部/扇形/全环燃烧室贫油点火性能换算[J]. 航空动力学报,2017,32(8): 1822-1826. ZHAO Minglong,YANG Zhimin,LIN Yuzhen,et al. Conversion methods for lean ignition performances among single-sector,multi-sector and full annular combustors[J]. Journal of Aerospace Power,2017,32(8): 1822-1826. (in Chinese

    ZHAO Minglong, YANG Zhimin, LIN Yuzhen, et al. Conversion methods for lean ignition performances among single-sector, multi-sector and full annular combustors[J]. Journal of Aerospace Power, 2017, 32(8): 1822-1826. (in Chinese)
    [36] 陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社,2006. CHEN Guang. Structural design analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006. (in Chinese

    CHEN Guang. Structural design analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006. (in Chinese)
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  15
  • HTML浏览量:  7
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 网络出版日期:  2024-01-16

目录

    /

    返回文章
    返回