留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉压波数频率谱的翼型尾缘散射噪声预测

余荣科 冯和英 赵鲲 肖春华 彭睿哲 郭鹏

余荣科, 冯和英, 赵鲲, 等. 基于脉压波数频率谱的翼型尾缘散射噪声预测[J]. 航空动力学报, 2024, 39(X):20230450 doi: 10.13224/j.cnki.jasp.20230450
引用本文: 余荣科, 冯和英, 赵鲲, 等. 基于脉压波数频率谱的翼型尾缘散射噪声预测[J]. 航空动力学报, 2024, 39(X):20230450 doi: 10.13224/j.cnki.jasp.20230450
YU Rongke, FENG Heying, ZHAO Kun, et al. Trailing edge scattering noise prediction based on wavenumber-frequency spectrum of pressure fluctuation[J]. Journal of Aerospace Power, 2024, 39(X):20230450 doi: 10.13224/j.cnki.jasp.20230450
Citation: YU Rongke, FENG Heying, ZHAO Kun, et al. Trailing edge scattering noise prediction based on wavenumber-frequency spectrum of pressure fluctuation[J]. Journal of Aerospace Power, 2024, 39(X):20230450 doi: 10.13224/j.cnki.jasp.20230450

基于脉压波数频率谱的翼型尾缘散射噪声预测

doi: 10.13224/j.cnki.jasp.20230450
基金项目: 青年人才托举工程项目(2020-xxxx-QT-xxx); 国家自然科学基金(52375090); 基础加强项目(2022-xxxxx-128); 湖南省自然科学基金项目(2022JJ30249,2020JJ4306)
详细信息
    作者简介:

    余荣科(1998-),男,硕士生,主要从事翼型尾缘噪声快速预测方法研究。E-mail:yk9411@126.com

    通讯作者:

    冯和英(1983-),教授,博士生导师,博士。E-mail:fengheying@hnust.edu.cn

  • 中图分类号: V211.7

Trailing edge scattering noise prediction based on wavenumber-frequency spectrum of pressure fluctuation

  • 摘要:

    基于湍流边界层脉动压力波数-频率谱建模的TNO模型是一种翼型尾缘散射噪声快速预测模型。但TNO(荷兰国家应用科学研究院)模型所采用的波数-频率谱忽略了脉动压力源项中的湍流-湍流项(TT项),导致中高频段噪声预测存在较大偏差。为此,优化模型的流场输入,并引入Chase I模型的TT项,以提高模型的准确性。基于风洞实验获得的NACA0018翼型远场噪声数据,验证了改进后模型的有效性,结果显示:相较于原始模型采用XFOIL方法计算流场作为波数-频率谱的输入,采用RANS方法来计算流场输入更为准确;关于高波数区波数-频率谱幅值的预测,是否引入TT项对预测结果的影响较大;改进后的尾缘散射噪声快速预测方法对高频段噪声的预测精度有明显提升;改进前的TNO模型存在噪声预测偏差随着攻角的增大而增大的问题,改进后的模型对此问题有明显缓解。

     

  • 图 1  翼型结构网格示意图

    Figure 1.  Schematic diagram of airfoil structure grid

    图 2  计算域及边界条件示意图

    Figure 2.  Calculation domain and boundary conditions

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  Re=1×106α=0°时表面压力系数对比

    Figure 4.  Re=1×106, α=0°, comparison of surface pressure coefficient

    图 5  远场测量装置布置示意图

    Figure 5.  Arrangement of far-field measuring devices

    图 6  0.55 m × 0.4 m声学风洞开口实验段及实验装置

    Figure 6.  0.55 m × 0.4 m acoustic wind tunnel opening test section and experimental equipment

    图 7  NACA0018实验模型

    Figure 7.  NACA0018 experimental model

    图 8  远场声压级重复性测量结果

    Figure 8.  Repeatability measurement results of far-field sound pressure level

    图 9  α=0°时,不同流速下XFOIL方法和RANS方法噪声预测与实验结果对比

    Figure 9.  Comparison of XFOIL and RANS noise prediction with experimental results at different inflow velocities at α=0º

    图 10  同一来流速度,α=0°~3°时,XFOIL和RANS噪声预测与实验结果对比

    Figure 10.  Comparison of XFOIL and RANS noise prediction with experimental results at the same incoming flow velocity, α=0°~3°

    图 11  U0=50 m/s、α=0°、f=2 000 Hz时,波数-频率谱三维图

    Figure 11.  Three-dimensional diagram of wavenumber-frequency spectrum at U0=50 m/s、α=0°、f=2 000 Hz

    图 12  U0=50 m/s、α=0°、f=2000 Hz时,k1方向波数-频率谱

    Figure 12.  Wavenumber-frequency spectrum in k1 direction at U0=50 m/s、α=0°、f=2000 Hz

    图 13  α=0°时,不同来流速度,原始TNO模型与改进后模型结果对比

    Figure 13.  Comparison of the results of the original TNO model and the improved model at different inflow velocities at α=0°

    图 14  U0=50 m/s,α=0°~3°时,原始TNO模型与改进后模型预测结果对比

    Figure 14.  Comparison of prediction results between the original TNO model and the improved model at U0=50 m/s,α=0°~3°

    图 15  α=0°,U0=44.3,65 m/s 时,总声压级指向分布

    Figure 15.  Overall sound pressure directivity distribution at α=0°,U0=44.3,65 m/s

    图 16  α=3°,U0=44.3m/s、65m/s 时,总声压级指向分布

    Figure 16.  Overall sound pressure directivity distribution at α=3°,U0=44.3,65 m/s

  • [1] LEE S,AYTON L,BERTAGNOLIO F,et al. Turbulent boundary layer trailing-edge noise: theory,computation,experiment,and application[J]. Progress in Aerospace Sciences,2021,126: 100737. doi: 10.1016/j.paerosci.2021.100737
    [2] ROGER M,MOREAU S. Back-scattering correction and further extensions of Amiet’s trailing-edge noise model. Part 1: theory[J]. Journal of Sound and Vibration,2005,286(3): 477-506. doi: 10.1016/j.jsv.2004.10.054
    [3] OERLEMANS S,SIJTSMA P,MÉNDEZ LÓPEZ B. Location and quantification of noise sources on a wind turbine[J]. Journal of Sound and Vibration,2007,299(4/5): 869-883.
    [4] 吕文春,汪建文,段亚范,等. 翼型凹变对风轮旋转噪声影响特性分析[J]. 振动与冲击,2021,40(1): 45-51,85. LÜ Wenchun,WANG Jianwen,DUAN Yafan,et al. Effects of airfoil concave change on rotating noise of wind turbine[J]. Journal of Vibration and Shock,2021,40(1): 45-51,85. (in Chinese

    LÜ Wenchun, WANG Jianwen, DUAN Yafan, et al. Effects of airfoil concave change on rotating noise of wind turbine[J]. Journal of Vibration and Shock, 2021, 40(1): 45-51, 85. (in Chinese)
    [5] 朱卫军,刘宇新,孙振业,等. 基于壁面压力谱方法的风力机气动噪声模型[J]. 空气动力学学报,2022,40(4): 81-89. ZHU Weijun,LIU Yuxin,SUN Zhenye,et al. Wind turbine noise prediction model based on airfoil wall-pressure spectra[J]. Acta Aerodynamica Sinica,2022,40(4): 81-89. (in Chinese

    ZHU Weijun, LIU Yuxin, SUN Zhenye, et al. Wind turbine noise prediction model based on airfoil wall-pressure spectra[J]. Acta Aerodynamica Sinica, 2022, 40(4): 81-89. (in Chinese)
    [6] POWELL A. On the aerodynamic noise of a rigid flat plate moving at zero incidence[J]. The Journal of the Acoustical Society of America,1959,31(12): 1649-1653. doi: 10.1121/1.1907674
    [7] WILLIAMS J E F,HALL L H. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane[J]. Journal of Fluid Mechanics,1970,40(4): 657. doi: 10.1017/S0022112070000368
    [8] BROOKS T F,POPE D S,MARCOLINI M A. Airfoil self-noise and prediction: NASA-RP-1218[R]. Hampton,Virginia: NASA Langley Research Center,1989.
    [9] 柏宝红,李晓东. 翼型湍流尾缘噪声半经验预测公式改进[J]. 北京航空航天大学学报,2017,43(1): 86-92. BAI Baohong,LI Xiaodong. Improvement of airfoil turbulent trailing-edge noise semi-empirical prediction formulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(1): 86-92. (in Chinese

    BAI Baohong, LI Xiaodong. Improvement of airfoil turbulent trailing-edge noise semi-empirical prediction formulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 86-92. (in Chinese)
    [10] SINGH S K,GARG M,NARAYANAN S,et al. On the reductions of airfoil broadband noise through sinusoidal trailing-edge serrations[J]. Journal of Aerospace Engineering,2022,35(2): 04022003. doi: 10.1061/(ASCE)AS.1943-5525.0001386
    [11] HU Yasen,ZHANG P J Y,WAN Zhenhua,et al. Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle[J]. Physics of Fluids,2022,34(10): 105108. doi: 10.1063/5.0108565
    [12] TURNER J M,KIM J W. Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall[J]. Physics of Fluids,2020,32(6): 065103. doi: 10.1063/5.0009664
    [13] 柏宝红,李晓东. 一种基于平均流场的翼型尾缘宽频噪声预测方法[J]. 航空动力学报,2016,31(1): 115-123. BAI Baohong,LI Xiaodong. A RANS-based prediction method for the airfoil broadband trailing edge noise[J]. Journal of Aerospace Power,2016,31(1): 115-123. (in Chinese

    BAI Baohong, LI Xiaodong. A RANS-based prediction method for the airfoil broadband trailing edge noise[J]. Journal of Aerospace Power, 2016, 31(1): 115-123. (in Chinese)
    [14] Parchen R R. Progress report DRAW: A prediction scheme for trailing edge noise based on detailed boundary layer characteristics[M]. TNO Institute of Applied Physics,1998.
    [15] KRAICHNAN R H. Pressure fluctuations in turbulent flow over a flat plate[J]. The Journal of the Acoustical Society of America,1956,28(3): 378-390. doi: 10.1121/1.1908336
    [16] BLAKE W K. Mechanics of flow-induced sound and vibration. Volume 2,Complex flow-structure interactions[M]. Array London; San Diego,CA: Academic Press,2017
    [17] HOWE M S. A review of the theory of trailing edge noise[J]. Journal of Sound and Vibration,1978,61(3): 437-465. doi: 10.1016/0022-460X(78)90391-7
    [18] KAMRUZZAMAN M,LUTZ T,WÜRZ W,et al. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data[J]. Wind Energy,2012,15(1): 45-61. doi: 10.1002/we.505
    [19] BERTAGNOLIO F,FISCHER A,ZHU Weijun. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling[J]. Journal of Sound and Vibration,2014,333(3): 991-1010. doi: 10.1016/j.jsv.2013.10.008
    [20] STALNOV O,PARUCHURI C,JOSEPH P. Prediction of broadband trailing-edge noise based on Blake model and amiet theory[R]. AIAA 2015-2526,2015.
    [21] AMIET R K. Noise due to turbulent flow past a trailing edge[J]. Journal of Sound Vibration,1976,47(3): 387-393. doi: 10.1016/0022-460X(76)90948-2
    [22] STALNOV O,CHAITANYA P,JOSEPH P F. Towards a non-empirical trailing edge noise prediction model[J]. Journal of Sound and Vibration,2016,372: 50-68. doi: 10.1016/j.jsv.2015.10.011
    [23] FISCHER A,BERTAGNOLIO F,MADSEN H A. Improvement of TNO type trailing edge noise models[J]. European Journal of Mechanics-B,2017,61: 255-262. doi: 10.1016/j.euromechflu.2016.09.005
    [24] LEE S. The effect of airfoil shape on trailing edge noise[J]. Journal of Theoretical and Computational Acoustics,2019,27(2): 1850020. doi: 10.1142/S2591728518500202
    [25] ALI ABID H,STALNOV O,KARABASOV S A. Comparative analysis of low order wall pressure spectrum models for trailing edge noise based in amiet theory[R]. AIAA 2021-2231,2021.
    [26] ALI ABID H,MARKESTEIJN A P,KARABASOV S A,et al. Improving accuracy of airfoil trailing edge noise models with turbulent flow anisotropy[R]. AIAA 2022-3105,2022.
    [27] CHASE D M. Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[J]. Journal of Sound Vibration,1980,70(1): 29-67. doi: 10.1016/0022-460X(80)90553-2
    [28] KRAICHNAN R H. Noise transmission from boundary layer pressure fluctuations[J]. The Journal of the Acoustical Society of America,1957,29(1): 65-80. doi: 10.1121/1.1908686
    [29] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1955,231(1187): 505-514.
    [30] ALI ABID H,MARKESTEIJN A P,KARABASOV S A. Trailing edge noise modelling of flow over NACA airfoils informed by LES[R]. AIAA 2021-2233,2021.
    [31] CORCOS G M. The structure of the turbulent pressure field in boundary-layer flows[J]. Journal of Fluid Mechanics,1964,18(3): 353. doi: 10.1017/S002211206400026X
    [32] KAMRUZZAMAN M,BEKIROPOULOS D,LUTZ T,et al. A semi-empirical surface pressure spectrum model for airfoil trailing-edge noise prediction[J]. International Journal of Aeroacoustics,2015,14(5/6): 833-882.
    [33] COLES D. The law of the wake in the turbulent boundary layer[J]. Journal of Fluid Mechanics,1956,1(2): 191-226. doi: 10.1017/S0022112056000135
    [34] DRELA M,GILES M B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J]. AIAA Journal,1987,25(10): 1347-1355. doi: 10.2514/3.9789
    [35] SCHLICHTING H. Boundary-layer theory[M]. 6th ed. New York: McGraw-Hill,1968.
    [36] KAMRUZZAMAN M,HERRIG A,LUTZ TH,et al. Comprehensive evaluation and assessment of trailing edge noise prediction based on dedicated measurements[J]. Noise Control Engineering Journal,2011,59(1): 54-67. doi: 10.3397/1.3531794
    [37] HUTTER K,WANG Yongqi. Turbulent mixing length models and their applications to elementary flow configurations[M]. Fluid and Thermodynamics. Cham: Springer,2016: 263-316.
    [38] JIANG Min,LI Xiaodong,BAI Baohong,et al. Numerical simulation on the NACA0018 airfoil self-noise generation[J]. Theoretical and Applied Mechanics Letters,2012,2(5): 052004. doi: 10.1063/2.1205204
    [39] NAKANO T,FUJISAWA N,OGUMA Y,et al. Experimental study on flow and noise characteristics of NACA0018 airfoil[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(7): 511-531. doi: 10.1016/j.jweia.2006.11.002
  • 加载中
图(16)
计量
  • 文章访问数:  12
  • HTML浏览量:  10
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 网络出版日期:  2024-06-07

目录

    /

    返回文章
    返回