留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形翅片相变传热特性及优化

许泽 邢玉明 殷健宝 侯煦 王仕淞

许泽, 邢玉明, 殷健宝, 等. 分形翅片相变传热特性及优化[J]. 航空动力学报, 2024, 39(X):20230454 doi: 10.13224/j.cnki.jasp.20230454
引用本文: 许泽, 邢玉明, 殷健宝, 等. 分形翅片相变传热特性及优化[J]. 航空动力学报, 2024, 39(X):20230454 doi: 10.13224/j.cnki.jasp.20230454
XU Ze, XING Yu-ming, YIN Jianbao, et al. Heat transfer characteristics and optimization of fractal fin during phase change[J]. Journal of Aerospace Power, 2024, 39(X):20230454 doi: 10.13224/j.cnki.jasp.20230454
Citation: XU Ze, XING Yu-ming, YIN Jianbao, et al. Heat transfer characteristics and optimization of fractal fin during phase change[J]. Journal of Aerospace Power, 2024, 39(X):20230454 doi: 10.13224/j.cnki.jasp.20230454

分形翅片相变传热特性及优化

doi: 10.13224/j.cnki.jasp.20230454
详细信息
    作者简介:

    许泽(1999-),男,硕士生,主要从事相变材料、换热器和蓄热体方面研究。E-mail:yxdxz@buaa.edu.cn

    通讯作者:

    邢玉明(1966-),男,教授,博士生导师,博士,主要研究方向为制冷及低温工程。E-mail:补充

  • 中图分类号: V259;TK124

Heat transfer characteristics and optimization of fractal fin during phase change

  • 摘要:

    相变材料的低导热率制约了潜热储热系统的效率,提出了一种新型分形翅片改善潜热储热系统的相变传热特性。建立二维管壳潜热储热系统模型,利用焓-多孔介质法进行瞬态模拟,研究了嵌入分形翅片对系统凝固性能的影响,分形翅片长度比和分支角对凝固过程影响显著,分形翅片加快了相变材料的凝固,使系统温度分布更加均匀。与直翅片相比,分形翅片显著强化了系统的换热性能,采用人工神经网络对数据进行拟合,以液相百分数为优化目标,通过遗传算法得到优化后的翅片结构:最佳长度比为1.425,两分支角分别为50°和30°;优化后分形翅片系统的凝固时间比直翅片系统减少76.9%。对分形翅片参数进行了敏感度分析,结果表明长度比对系统凝固时间的影响更大,1级分支角次之,更应关注这两个参数的变化对凝固时间的影响。

     

  • 图 1  树状分形翅片的构建

    Figure 1.  Construction of fractal fin

    图 2  几何模型示意图

    Figure 2.  Schematic diagram of geometric model

    图 3  数值模拟与文献结果对比

    Figure 3.  Comparison between numerical simulation and literature result

    图 4  网格无关性和时间步长无关性分析

    Figure 4.  Grid independence and time step independence analysis

    图 5  计算域

    Figure 5.  Computational domain

    图 6  神经网络结构图

    Figure 6.  Structure of the neural network

    图 7  拟合结果

    Figure 7.  the fitting result

    图 8  遗传算法流程图

    Figure 8.  process of genetic algorithm

    图 9  分形翅片与直翅片液相及温度分布Fig.9solid phase and temperature distribution of fractal fin and radial fin

    图 10  分形翅片与直翅片液相百分数及温度变化曲线

    Figure 10.  liquid fraction and temperature of fractal fin and radial fin

    图 11  分形翅片与直翅片温度方差对比

    Figure 11.  the comparison diagram of temperature variance between fractal fin and radial fin

    图 12  翅片参数对熔化时间的一阶灵敏度

    Figure 12.  First order sensitivity index of fin parameters to the solidification time

    图 13  翅片参数对凝固时间的二阶灵敏度

    Figure 13.  Second order sensitivity index of fin parameters to the solidification time

    表  1  材料的热物理性质

    Table  1.   Thermophysical properties of materials

    热物性参数 月桂酸 铝合金
    密度/(kg/m3 869 2703
    比热容(J/(kg∙K)) 1760(固)/2150(液) 963
    熔点/(K) 315~317
    潜热/(kJ/kg) 178.7
    导热系数/(W/(m∙K)) 0.22(固)/0.16(液) 180
    黏度/(Pa∙s) 0.001
    下载: 导出CSV

    表  2  翅片参数对凝固时间的一阶灵敏度

    Table  2.   First order sensitivity of fin parameters to solidification time

    翅片参数主效应指标总效应指标
    长度比0.1850.675 9
    0级分支角0.076 40.642 9
    1级分支角0.143 10.480 6
    下载: 导出CSV
  • [1] RATHOD M K,BANERJEE J. Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins[J]. Applied Thermal Engineering,2015,75: 1084-1092. doi: 10.1016/j.applthermaleng.2014.10.074
    [2] 王玮琦,邢玉明,郑文远,等. 环肋翅片管相变传热特性及分形优化[J]. 北京航空航天大学学报,2022,48(12): 2520-2528. WANG Weiqi,XING Yuming,ZHENG Wenyuan,et al. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(12): 2520-2528. (in Chinese

    WANG Weiqi, XING Yuming, ZHENG Wenyuan, et al. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. (in Chinese)
    [3] ZHAO Chunrong,OPOLOT M,LIU Ming,et al. Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams[J]. International Journal of Heat and Mass Transfer,2020,150: 119348. doi: 10.1016/j.ijheatmasstransfer.2020.119348
    [4] 马慧齐. 基于分形理论的相变换热单元的传热性能研究[D]. 南京: 南京师范大学,2020. MA Huiqi. Study on heat transfer performance of phase change heat exchange unit based on fractal theory[D]. Nanjing: Nanjing Normal University,2020. (in Chinese

    MA Huiqi. Study on heat transfer performance of phase change heat exchange unit based on fractal theory[D]. Nanjing: Nanjing Normal University, 2020. (in Chinese)
    [5] SCIACOVELLI A,GAGLIARDI F,VERDA V. Maximization of performance of a PCM latent heat storage system with innovative fins[J]. Applied Energy,2015,137: 707-715. doi: 10.1016/j.apenergy.2014.07.015
    [6] DENG Zilong,WU Suchen,XU Hao,et al. Melting heat transfer enhancement of a horizontal latent heat storage unit by fern-fractal fins[J]. Chinese Journal of Chemical Engineering,2020,28(11): 2857-2871. doi: 10.1016/j.cjche.2020.08.022
    [7] SHEIKHOLESLAMI M,LOHRASBI S,GANJI D D. Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method[J]. Applied Thermal Engineering,2016,107: 154-166. doi: 10.1016/j.applthermaleng.2016.06.158
    [8] YU Cheng,WU Suchen,HUANG Yongping,et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins[J]. Journal of Energy Storage,2020,30: 101498. doi: 10.1016/j.est.2020.101498
    [9] ZHANG C,LI J ,CHEN Y . Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy,2020,259(2): 114102.1-114102.15.
    [10] MOTAHAR S. Experimental study and ANN-based prediction of melting heat transfer in a uniform heat flux PCM enclosure[J]. Journal of Energy Storage,2020,30: 101535. doi: 10.1016/j.est.2020.101535
    [11] BABY R,BALAJI C. Thermal optimization of PCM based pin fin heat sinks: an experimental study[J]. Applied Thermal Engineering,2013,54(1): 65-77. doi: 10.1016/j.applthermaleng.2012.10.056
    [12] 冯鸿渔,王健,冯佰威. 双尾船尾型参数对阻力和伴流的敏感度分析[J]. 武汉理工大学学报(交通科学与工程版),2023,47(04): 654-658. Feng Hongyu,Wang Jian,Feng Baiwei. Sensitivity Analysis of Parameters of Twin-skeg Ship’s Stern to Resistance and Wake[J/OL]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition): 1-13,(in Chinese).

    Feng Hongyu, Wang Jian, Feng Baiwei. Sensitivity Analysis of Parameters of Twin-skeg Ship’s Stern to Resistance and Wake[J/OL]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition): 1-13, (in Chinese).
    [13] AL-ABIDI A A,MAT S,SOPIAN K,et al. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat and Mass Transfer,2013,61: 684-695. doi: 10.1016/j.ijheatmasstransfer.2013.02.030
    [14] BELÉN Z,JOSÉ M M,CABEZA L F ,et al. Review on thermal energy storage with phase change: materials,heat transfer analysis and applications[J]. Applied Thermal Engineering,2003,23(3): 251-283.
    [15] SWAMINATHAN C R,VOLLER V R. A general enthalpy method for modeling solidification processes[J]. Metallurgical Transactions B,1992,23(5): 651-664. doi: 10.1007/BF02649725
    [16] ISMAIL K A R,ALVES C L F,MODESTO M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering,2001,21(1): 53-77. doi: 10.1016/S1359-4311(00)00002-8
    [17] HOLLAND J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,Control,and Artificial Intelligence[M]. Michigan: The MIT Press,1992.
    [18] SOBOLÁ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation,2001,55(1/2/3): 271-280.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  15
  • HTML浏览量:  6
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 网络出版日期:  2024-06-05

目录

    /

    返回文章
    返回