留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工质/涡轮电驱动分布式推进系统设计参数研究

王笑晨 贾琳渊 陈玉春 王玉茹

王笑晨, 贾琳渊, 陈玉春, 等. 工质/涡轮电驱动分布式推进系统设计参数研究[J]. 航空动力学报, 2024, 39(4):20230460 doi: 10.13224/j.cnki.jasp.20230460
引用本文: 王笑晨, 贾琳渊, 陈玉春, 等. 工质/涡轮电驱动分布式推进系统设计参数研究[J]. 航空动力学报, 2024, 39(4):20230460 doi: 10.13224/j.cnki.jasp.20230460
WANG Xiaochen, JIA Linyuan, CHEN Yuchun, et al. Design parameter analysis of gas/turbo-electric driven distributed propulsion system[J]. Journal of Aerospace Power, 2024, 39(4):20230460 doi: 10.13224/j.cnki.jasp.20230460
Citation: WANG Xiaochen, JIA Linyuan, CHEN Yuchun, et al. Design parameter analysis of gas/turbo-electric driven distributed propulsion system[J]. Journal of Aerospace Power, 2024, 39(4):20230460 doi: 10.13224/j.cnki.jasp.20230460

工质/涡轮电驱动分布式推进系统设计参数研究

doi: 10.13224/j.cnki.jasp.20230460
基金项目: 国家重大专项基础研究项目(J2019-Ⅰ-0010-0010)
详细信息
    作者简介:

    王笑晨(1996-),男,博士生,主要从事航空发动机总体设计研究

    通讯作者:

    贾琳渊(1989-),男,副教授,博士,主要从事航空发动机总体设计研究。E-mail:jialinyuan@nwpu.edu.cn

  • 中图分类号: V231.3

Design parameter analysis of gas/turbo-electric driven distributed propulsion system

  • 摘要:

    针对回热式工质驱动分布式推进系统在布局、安装等方面存在的不足,将涡轮电驱动方式与其结合,提出了一种部分涡轮电分布式推进系统。基于部件法建立了设计点计算模型,开展了推进系统的能量流动机理分析,提出了能量传输中关键参数的设计方法。以此为基础,分析了设计参数对推进系统的影响,并对比了分析不同分布式推进系统的性能及设计参数。结果表明:部分涡轮电分布式推进系统耗油率对涡轮前温度的敏感性高于总增压比;相对于工质驱动分布式推进系统,部分涡轮电分布式推进系统存在1.7%的耗油率优势,且当功率占比选取合理时,能够改善原工质驱动分布式推进系统的不足。围绕推进系统耗油率,论证了基于工质驱动的部分涡轮电分布式推进系统在性能上的适用性。

     

  • 图 1  分布式推进系统的结构

    Figure 1.  Structure of distributed propulsion system

    图 2  带回热器的燃气涡轮发动机机构

    Figure 2.  Structure of recuperated turbo-engine

    图 3  工质驱动推进器结构

    Figure 3.  Structure of gas-driven propulsor

    图 4  电推进器结构

    Figure 4.  Structure of electric driven propulsor

    图 5  各部件计算流程

    Figure 5.  Calculation process for each module

    图 6  推进系统热力循环

    Figure 6.  Thermo cycle of propulsion system

    图 7  πcl对引气传输过程的影响

    Figure 7.  Influence of πcl on transmission process of bleed air

    图 8  最优πclCwPs,5的关系

    Figure 8.  Optimal πcl with respect to CwPs,5

    图 9  ηprogπfg的关系

    Figure 9.  Relationship of ηprog and πfg

    图 10  最优πfg分布(T245=450~700 K, p245/p0=4.5~9, W2D/W23=7~19)

    Figure 10.  Distribution of optimal πfgT245=450—700 K, p245/p0=4.5—9, W2D/W23=7—19)

    图 11  Pext对耗油率的影响(πΣ=55, T4=1800 K, δe=0, γ=27, W22=24.65 kg/s)

    Figure 11.  Influence of Pext on fuel consumption (πΣ=55, T4=1800 K, δe=0, γ=27, W22=24.65 kg/s)

    图 12  Pext迭代优化流程

    Figure 12.  Iterative optimization process of Pext

    图 13  设计结果验证

    Figure 13.  Verification of design results

    图 14  热力循环参数对耗油率的影响

    Figure 14.  Effect of thermal cycle parameters on fuel consumption

    图 15  δe对推进系统的影响

    Figure 15.  Effects of δe on the propulsion system

    表  1  变量说明表

    Table  1.   Symbols

    参数说明
    η效率
    π压比
    πΣ总增压比
    W流量
    σ总压恢复系数
    P功率
    T总温
    ε换热效率
    δ分配比例
    下载: 导出CSV

    表  2  下标说明表

    Table  2.   Subscribes

    下标说明
    cl低压压气机
    ch高压压气机
    bl引气
    b燃烧室
    th高压涡轮
    tl低压涡轮
    h换热器热端
    c换热器冷端
    tp推进涡轮
    fg工质驱动风扇
    fe电推进风扇
    ele电力系统
    trans传输管路
    下载: 导出CSV

    表  3  部件效率及总压损失

    Table  3.   Efficiency and total pressure loss of components

    部件性能参数 数值
    低压压气机等熵效率
    (引气压缩效率)
    0.89
    高压压气机等熵效率 0.87
    高压涡轮等熵效率 0.90
    低压涡轮等熵效率 0.91
    换热效率 0.70
    换热器总压恢复系数(热端) 0.95
    换热器总压恢复系数(冷端) 0.95
    工质传输管路总压恢复系数 0.91
    推进器风扇等熵效率 0.90
    推进涡轮等熵效率 0.92
    电力系统传输效率 0.93
    下载: 导出CSV

    表  4  分布式推进系统对比

    Table  4.   Comparison of distributed propulsion system

    参数 工质驱动 部分涡轮电驱动 TeDP
    δe=0.4 δe=0.6
    πcl 11.80 10.47 6.38
    δbl 1.70 1.11 1.059
    W2D/W23 14.90 13.55 9.20
    W23,cor/(kg/s) 15.18 10.83 15.67
    W24,cor/(kg/s) 18.70 14.12 21.62
    Pele/MW 4.95 7.72 15.22
    ζ/(g/(N∙h)) 47.3 46.5 46.3 49.5
    下载: 导出CSV
  • [1] GOHARDANI A S,DOULGERIS G,SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences,2011,47(5): 369-391. doi: 10.1016/j.paerosci.2010.09.001
    [2] FELDER J,KIM H,BROWN G,et al. An examination of the effect of boundary layer ingestion on turboelectric distributed propulsion systems[R]. AIAA 2011-300,2011.
    [3] 徐德,许晓平,夏济宇,等. 分布式电推进系统气动-推进耦合特性[J/OL]. 航空动力学报, (2023-06-25)[2023-11-13]. https://doi.org/10.13224/j.cnki.jasp.20220681. XU De,XU Xiaoping,XIA Jining,et al. Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system[J/OL]. Journal of Aerospace Power, (2023-06-25)[2023-11-13]. https://doi.org/10.13224/j.cnki.jasp.20220681. (in Chinese

    XU De, XU Xiaoping, XIA Jining, et al. Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system[J/OL]. Journal of Aerospace Power, (2023-06-25)[2023-11-13]. https://doi.org/10.13224/j.cnki.jasp.20220681. (in Chinese)
    [4] 李嘉诚,盛汉霖,陈欣,等. 混合动力分布式电推进飞行器总体设计[J/OL]. 航空动力学报, (2022-12-20)[2023-06-25]. https://doi.org/10.13224/j.cnki.jasp.20220693. LI Jiacheng,SHENG Hanlin,CHEN Xin,et al. System design of hybrid distributed electric propulsion aircraft[J/OL]. Journal of Aerospace Power, (2022-12-20)[2023-06-25]. https://doi.org/10.13224/j.cnki.jasp.20220693. (in Chinese

    LI Jiacheng, SHENG Hanlin, CHEN Xin, et al. System design of hybrid distributed electric propulsion aircraft[J/OL]. Journal of Aerospace Power, (2022-12-20)[2023-06-25]. https://doi.org/10.13224/j.cnki.jasp.20220693. (in Chinese)
    [5] FELDER J,BROWN G V,DAEKIM H,et al. Turboelectric distributed propulsion in a hybrid wing body aircraft[C]//20th International Society for Airbreathing Engines. Gothenburg,Sweden: ISABE,2011: 1340-1360.
    [6] WICK A T,HOOKER J R,ZEUNE C H. Integrated aerodynamic benefits of distributed propulsion[R]. AIAA 2015-1500,2015.
    [7] FELDER J,KIM H,BROWN G. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft[R]. AIAA-2009-1132,2009.
    [8] GIBSON A,HALL D,WATERS M,et al. Superconducting electric distributed propulsion structural integration and design in a split-wing regional airliner[R]. AIAA 2011-223,2011.
    [9] GREEN M,SCHILTGEN B,GIBSON A. Analysis of a distributed hybrid propulsion system with conventional electric machines[R]. AIAA 2012-3768,2012.
    [10] SCHILTGEN B,GREEN M,GIBSON A,et al. Benefits and concerns of hybrid electric distributed propulsion with conventional electric machines[R]. AIAA-2012-3769,2012.
    [11] SCHMOLLGRUBER P,ATINAULT O,CAFARELLI I,et al. Multidisciplinary exploration of DRAGON: an ONERA hybrid electric distributed propulsion concept[R]. AIAA 2019-1585,2019.
    [12] SCHMOLLGRUBER P,DONJAT D,RIDEL M,et al. Multidisciplinary design and performance of the ONERA hybrid electric distributed propulsion concept (DRAGON) [R]. AIAA 2020-0501,2020.
    [13] RIDEL M,VAN E N,PROSVIRNOVA T,et al. DRAGON: hybrid electrical architecture for distributed fans propulsion[EB/OL]. [2023-12-14]. https://hal.science/hal-03420612/.
    [14] SCHILTGEN B T,FREEMAN J. ECO-150-300 design and performance: a tube-and-wing distributed electric propulsion airliner[R]. AIAA 2019-1808,2019.
    [15] JANSEN R,BROWN G V,FELDER J L,et al. Turboelectric aircraft drive key performance parameters and functional requirements[R]. AIAA 2015-3890,2015.
    [16] 李开省. 电动飞机核心技术研究综述[J]. 航空科学技术,2019,30(11): 8-17. LI Kaisheng. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology,2019,30(11): 8-17. (in Chinese doi: 10.19452/j.issn1007-5453.2019.11.002

    LI Kaisheng. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 8-17. (in Chinese) doi: 10.19452/j.issn1007-5453.2019.11.002
    [17] 陈玉洁. 电气化推进系统研制新进展[J]. 航空动力,2020(5): 36-40. CHEN Yujie. Progress of the electrified propulsion[J]. Aerospace Power,2020(5): 36-40. (in Chinese

    CHEN Yujie. Progress of the electrified propulsion[J]. Aerospace Power, 2020(5): 36-40. (in Chinese)
    [18] 姚轩宇,蒋承志,满运堃. 航空混合电推进试验设备发展[J]. 航空动力,2019(5): 65-67. YAO YAO Xuanyu,JIANG Chengzhi,MAN Yunkun. The development of aviation hybrid electric propulsion system test equipments[J]. Aerospace Power,2019(5): 65-67. (in Chinese

    YAO YAO Xuanyu, JIANG Chengzhi, MAN Yunkun. The development of aviation hybrid electric propulsion system test equipments[J]. Aerospace Power, 2019(5): 65-67. (in Chinese)
    [19] 王翔宇. 电动飞行与推进系统变革[J]. 航空动力,2019(3): 43-47. WANG Xiangyu. Electric flight and the technological change of propulsion system[J]. Aerospace Power,2019(3): 43-47. (in Chinese

    WANG Xiangyu. Electric flight and the technological change of propulsion system[J]. Aerospace Power, 2019(3): 43-47. (in Chinese)
    [20] 陈玉春,贾琳渊,康瑞元,等. 分布式推进系统: CN206528653U[P]. 2017-09-29.
    [21] FENNY C A,OLSON R L. Distributed propulsion system: US10556680[P]. 2020-02-11.
    [22] 王笑晨,陈玉春,贾琳渊,等. 回热式工质驱动分布式推进系统参数研究[J]. 推进技术,2022,43(9): 60-68. WANG Xiaochen,CHEN Yuchun,JIA Linyuan,et al. Component parameters of recuperated gas-driven distributed propulsion system[J]. Journal of Propulsion Technology,2022,43(9): 60-68. (in Chinese

    WANG Xiaochen, CHEN Yuchun, JIA Linyuan, et al. Component parameters of recuperated gas-driven distributed propulsion system[J]. Journal of Propulsion Technology, 2022, 43(9): 60-68. (in Chinese)
    [23] 龚昊,王占学,刘增文. 间冷回热循环航空发动机参数匹配研究[J]. 航空动力学报,2012,27(8): 1809-1814. GONG Hao,WANG Zhanxue,LIU Zengwen. Study on thermodynamic cycle parameter matching for intercooled recuperated aero-engine[J]. Journal of Aerospace Power,2012,27(8): 1809-1814. (in Chinese doi: 10.13224/j.cnki.jasp.2012.08.019

    GONG Hao, WANG Zhanxue, LIU Zengwen. Study on thermodynamic cycle parameter matching for intercooled recuperated aero-engine[J]. Journal of Aerospace Power, 2012, 27(8): 1809-1814. (in Chinese) doi: 10.13224/j.cnki.jasp.2012.08.019
    [24] 陈玉春,贾琳渊,李维. 航空燃气涡轮发动机原理[M]. 北京: 科学出版社,2022.
    [25] 杨世铭,陶文铨. 传热学[M]. 北京: 高等教育出版社,2006.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  169
  • HTML浏览量:  30
  • PDF量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 网络出版日期:  2023-12-22

目录

    /

    返回文章
    返回