Effect of suction leading edge vortex generator on characteristics of compressor cascade
-
摘要:
以压气机平面叶栅实验件为研究对象,在叶栅端壁靠近吸力面前缘布置涡流发生器,来改善压气机静叶气动性能并控制角区分离流动。采用数值模拟的方法,研究不同高度、长度和节距位置的涡流发生器对角区分离流动和气动性能的影响。研究结果表明:吸力面前缘涡流发生器在通道进口端壁附近产生诱导涡,抑制角区低能流体聚集,使分离起始点后移,缩小角区沿着节距方向范围,降低流动损失。涡流发生器应设置在角区分离起始位置,角区分离控制效果随着涡流发生器高度的增高先增强后减弱,随着涡流发生器的弦长增加逐渐减弱,随着布置位置远离吸力面而先增强后减弱,当涡流发生器布置在端壁回流区与主流区交界线、弦长为25%叶片弦长、高度等于2%叶高时,叶栅流动损失减小10.3%。
Abstract:A compressor linear cascade was studied, and vortex generators were arranged near the suction leading edge of the end wall to improve the stator aerodynamic characteristic and control the corner separation. The effects of the vortex generators with different heights, lengths, and pitch positions on the corner separation flow and aerodynamic characteristics were studied by numerical simulation. The results showed that the suction leading edge vortex generator can generate the induced vortex near the end wall of the passage inlet, which inhibited the accumulation of low-energy fluids in the corner region, shifted the separation starting point backward, and narrowed the corner region along the pitch direction, thereby reducing the flow loss. The vortex generator should be arranged at the starting position of the corner separation. The control effect of the corner separation first increased and then decreased with the increase of the height of the vortex generator. With the increase of the chord of the vortex generator, it gradually decreased. As the arrangement position was far away from the suction, it first increased and then decreased. When the vortex generator was arranged at the boundary between the end wall recirculation region and the mainstream region, the chord was equal to 25% of the blade chord, and the height was equal to 2% of the blade height, the flow loss can be reduced by 10.3%.
-
表 1 叶栅几何参数
Table 1. Cascade geometry parameters
参数 数值 弦长 c/mm 40 叶高 H/mm 100 节距 t/mm 30 安装角 γ/(°) 60 几何进口角 α/(°) 46.23 几何出口角 β/(°) 76.93 进口马赫数 Ma 0.7 表 2 不同高度方案
Table 2. Different height schemes
方案编号 涡流发生器高度 h/mm 1 1 2 2 3 3 4 4 5 5 表 3 不同弦长方案
Table 3. Different chord schemes
方案编号 涡流发生器弦长与叶片弦长之比 2 0.50 6 0.25 7 0.75 表 4 不同位置方案
Table 4. Different location schemes
方案编号 $ \overline {t_{}^{}} $/% 6 5 8 10 9 15 10 20 11 25 -
[1] YOON Y S,SONG S J,SHIN H W. Influence of flow coefficient,stagger angle,and tip clearance on tip vortex in axial compressors[J]. Journal of Fluids Engineering,2006,128(6): 1274-1280. doi: 10.1115/1.2354522 [2] HAH C,LOELLBACH J. Development of hub corner stall and its influence on the performance of axial compressor blade rows[J]. Journal of Turbomachinery,1999,121(1): 67-77. doi: 10.1115/1.2841235 [3] DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299 [4] 李涛,吴亚东,欧阳华. 涡流发生器对轴流压气机叶顶流动不稳定性影响的实验研究[J]. 推进技术,2021,42(12): 2723-2733. LI Tao,WU Yadong,OUYANG Hua. Experimental research on effects of vortex generators on tip flow instability of an axial compressor[J]. Journal of Propulsion Technology,2021,42(12): 2723-2733. (in ChineseLI Tao, WU Yadong, OUYANG Hua. Experimental research on effects of vortex generators on tip flow instability of an axial compressor[J]. Journal of Propulsion Technology, 2021, 42(12): 2723-2733. (in Chinese) [5] 江瑞芳,赵振宙,冯俊鑫,等. 涡流发生器对风力机叶片流动控制的数值研究[J]. 工程热物理学报,2021,42(12): 3170-3177. JIANG Ruifang,ZHAO Zhenzhou,FENG Junxin,et al. Numerical study on flow control of wind turbine blade by vortex generators[J]. Journal of Engineering Thermophysics,2021,42(12): 3170-3177. (in ChineseJIANG Ruifang, ZHAO Zhenzhou, FENG Junxin, et al. Numerical study on flow control of wind turbine blade by vortex generators[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3170-3177. (in Chinese) [6] 吴瀚,王建宏,黄伟,等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报,2021,42(6): 025371. WU Han,WANG Jianhong,HUANG Wei,et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 025371. (in ChineseWU Han, WANG Jianhong, HUANG Wei, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371. (in Chinese) [7] GUO Shuang,CHEN Shaowen,SONG Yanping,et al. Effects of boundary layer suction on aerodynamic performance in a high-load compressor cascade[J]. Chinese Journal of Aeronautics,2010,23(2): 179-186. doi: 10.1016/S1000-9361(09)60202-8 [8] SUDER K L,HATHAWAY M D,THORP S A,et al. Compressor stability enhancement using discrete tip injection[J]. Journal of Turbomachinery,2001,123(1): 14-23. doi: 10.1115/1.1330272 [9] WU Y,ZHAO X H,LI Y H,et al. Corner separation control in a highly loaded compressor cascade using plasma aerodynamic actuation[C]//Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition. Copenhagen,Denmark: ASME,2013: 323-332. [10] LI Yinghong,WU Yun,ZHOU Min,et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids,2010,48(6): 1015-1023. doi: 10.1007/s00348-009-0787-2 [11] HARVEY N W. Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics: Part Ⅰ linear cascade investigation[C]//Proceedings of ASME Turbo Expo: Power for Land,Sea,and Air. Berlin,Germany: ASME,2009: 543-555. [12] LIU Xiwu,JIN Donghai,GUI Xingmin. Investigation of non-axisymmetric endwall contouring in a compressor cascade[J]. Journal of Thermal Science,2017,26(6): 490-504. doi: 10.1007/s11630-017-0966-z [13] 杨凌,陈韵之,钟兢军. 不同形状吸力面翼刀对叶栅二次流及性能的影响[J]. 工程热物理学报,2022,43(1): 50-57. YANG Ling,CHEN Yunzhi,ZHONG Jingjun. Effects of suction surface fences with different profiles on secondary flow and performance of compressor cascade[J] Journal of Engineering Thermophysics,2022,43(1): 50-57. (in ChineseYANG Ling, CHEN Yunzhi, ZHONG Jingjun. Effects of suction surface fences with different profiles on secondary flow and performance of compressor cascade[J] Journal of Engineering Thermophysics, 2022, 43(1): 50-57. (in Chinese) [14] MOON Y J,KOH S R. Counter-rotating streamwise vortex formation in the turbine cascade with endwall fence[J]. Computers and Fluids,2001,30(4): 473-490. doi: 10.1016/S0045-7930(00)00026-8 [15] DEICH M E,GUBALEV A B,FILIPPOV G A,et al. A new method of profiling the guide vane cascade of stage with small ratios diameter to length[J]. Teplienergetika,1962,8(8): 42-46. [16] GÜMMER V,WENGER U,KAU H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[J]. Journal of Turbomachinery,2001,123(1): 40-48. doi: 10.1115/1.1330268 [17] TAYLOR H D. Summary report on vortex generators[M]. Connecticut,US: United Aircraft Corporation: Research Department,1950. [18] LAW C H,WENNERSTROM A J,BUZZELL W A. The use of vortex generators as inexpensive compressor casing treatment[R]. Warrendale,US: SAE International,1976. [19] CHIMA R V. Computational modeling of vortex generators for turbomachinery[C]//Proceedings of ASME Turbo Expo: Power for Land,Sea,and Air. Berlin,Germany: ASME,2009: 1229-1238. [20] MEYER R,BECHERT D W,HAGE W. Secondary flow control on compressor blades to improve the performance of axial turbomachines[R]. Prague,Czech Republic: the 5th European Turbomachinery Conference,2003. [21] HERGT A,MEYER R,ENGEL K. Experimental investigation of flow control in compressor cascades[C]//Proceedings of ASME Turbo Expo 2006: Power for Land,Sea,and Air. Barcelona,Spain: ASME,2008: 231-240. [22] HERGT A,MEYER R,ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery,2013,135(2): 021026.1-021026.10. [23] DIAA A M,EL-DOSOKY M F,AHMED M A,et al. Boundary layer control of an axial compressor cascade using nonconventional vortex generators[C]//Proceedings of ASME International Mechanical Engineering Congress and Exposition. Houston,US: ASME,2015: 13-19. [24] HU J,WANG R,WU P,et al. Synthetic separation control using vortex generator and slot jet in a high load compressor cascade[J]. Journal of Applied Fluid Mechanics,2017,10(5): 1305-1318. doi: 10.18869/acadpub.jafm.73.242.27352 [25] MA Shan,CHU Wuli,ZHANG Haoguang,et al. Effects of modified micro-vortex generators on aerodynamic performance in a high-load compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy,2019,233(3): 309-323. doi: 10.1177/0957650918790018 [26] MA Shan,CHU Wuli,ZHANG Haoguang,et al. Study of combined flow control strategies based on a quantitative analysis in a high-load compressor cascade[J]. Aerospace Science and Technology,2019,93: 105346.1-105346.13. [27] LI Jiabin,JI Lucheng. Efficient design method for applying vortex generators in turbomachinery[J]. Journal of Turbomachinery,2019,141(8): 081005.1-081005.12. [28] HU Jiaguo,WANG Rugen,HUANG Danqin. Improvements of performance and stability of a single-stage transonic axial compressor using a combined flow control approach[J]. Aerospace Science and Technology,2019,86: 283-295. doi: 10.1016/j.ast.2018.12.033 [29] XU Wenfeng,SUN Peng,YANG Guogang. Effect of the bionic chamber position on the aerodynamic performance in a transonic compressor cascade[J]. Aerospace Science and Technology,2021,119: 107106.1-107106.10. -