留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸力面前缘涡流发生器对压气机叶栅性能影响

徐文峰 邹世龙 孙丹 鲁文昕 任国哲 赵欢

徐文峰, 邹世龙, 孙丹, 等. 吸力面前缘涡流发生器对压气机叶栅性能影响[J]. 航空动力学报, 2025, 40(5):20230485 doi: 10.13224/j.cnki.jasp.20230485
引用本文: 徐文峰, 邹世龙, 孙丹, 等. 吸力面前缘涡流发生器对压气机叶栅性能影响[J]. 航空动力学报, 2025, 40(5):20230485 doi: 10.13224/j.cnki.jasp.20230485
XU Wenfeng, ZOU Shilong, SUN Dan, et al. Effect of suction leading edge vortex generator on characteristics of compressor cascade[J]. Journal of Aerospace Power, 2025, 40(5):20230485 doi: 10.13224/j.cnki.jasp.20230485
Citation: XU Wenfeng, ZOU Shilong, SUN Dan, et al. Effect of suction leading edge vortex generator on characteristics of compressor cascade[J]. Journal of Aerospace Power, 2025, 40(5):20230485 doi: 10.13224/j.cnki.jasp.20230485

吸力面前缘涡流发生器对压气机叶栅性能影响

doi: 10.13224/j.cnki.jasp.20230485
基金项目: 辽宁省教育厅基本科研青年项目(JYTQN2023069); 沈阳航空航天大学引进人才科研启动基金(23YB20); 国家自然科学基金(52075346)
详细信息
    作者简介:

    徐文峰(1993-),男,讲师,博士,主要从事航空发动机气动热力学研究。E-mail:xuwf789@163.com

    通讯作者:

    孙丹(1981-),男,教授,博士,主要从事透平机械先进密封技术研究。E-mail:phd_sundan@163.com

  • 中图分类号: V233.5

Effect of suction leading edge vortex generator on characteristics of compressor cascade

  • 摘要:

    以压气机平面叶栅实验件为研究对象,在叶栅端壁靠近吸力面前缘布置涡流发生器,来改善压气机静叶气动性能并控制角区分离流动。采用数值模拟的方法,研究不同高度、长度和节距位置的涡流发生器对角区分离流动和气动性能的影响。研究结果表明:吸力面前缘涡流发生器在通道进口端壁附近产生诱导涡,抑制角区低能流体聚集,使分离起始点后移,缩小角区沿着节距方向范围,降低流动损失。涡流发生器应设置在角区分离起始位置,角区分离控制效果随着涡流发生器高度的增高先增强后减弱,随着涡流发生器的弦长增加逐渐减弱,随着布置位置远离吸力面而先增强后减弱,当涡流发生器布置在端壁回流区与主流区交界线、弦长为25%叶片弦长、高度等于2%叶高时,叶栅流动损失减小10.3%。

     

  • 图 1  叶栅参数示意图

    Figure 1.  Cascade parameters diagram

    图 2  涡流发生器简图

    Figure 2.  Schematic diagram of an eddy current generator

    图 3  计算网格和边界

    Figure 3.  Computational mesh and boundary

    图 4  进口总压分布[29]

    Figure 4.  Inlet total pressure distribution [29]

    图 5  叶表y+值云图

    Figure 5.  Contours of y+ on blade surface

    图 6  网格无关性

    Figure 6.  Mesh Independence

    图 7  数值及实验结果[29]

    Figure 7.  Numerical and experimental result[29]

    图 8  不同高度方案对$ {\overline C _{{\text{pt}}}} $的影响

    Figure 8.  Effect of different height schemes on $ {\overline C _{{\text{pt}}}} $

    图 9  不同高度方案下Cpt 的径向分布

    Figure 9.  Radial distribution of Cpt values under different height schemes

    图 10  不同高度方案下叶根静压系数曲线

    Figure 10.  Static pressure coefficient curves of leaf roots under different height schemes

    图 11  不同高度方案端壁及吸力面极限流线和静压系数

    Figure 11.  Static pressure coefficient contour and limiting streamlines of the end wall and the suction under different height schemes

    图 12  不同高度方案下的三维涡系结构

    Figure 12.  Three-dimensional vortex structure under different height schemes

    图 13  不同弦长方案对$ {\overline C _{{\text{pt}}}} $的影响

    Figure 13.  Effect of different chord schemes on $ {\overline C _{{\text{pt}}}} $

    图 14  不同弦长方案下叶根静压系数曲线

    Figure 14.  Static pressure coefficient curve of leaf roots under different chord schemes

    图 15  不同弦长方案端壁及吸力面极限流线和静压系数

    Figure 15.  Static pressure coefficient contour and limiting streamlines of the end wall and the suction under different chord schemes

    图 16  不同弦长方案下的三维涡系结构

    Figure 16.  Three-dimensional vortex structure under different chord schemes

    图 17  不同位置方案对$ {\overline C _{{\text{pt}}}} $的影响

    Figure 17.  Effect of different location scheme on $ {\overline C _{{\text{pt}}}} $

    图 18  不同位置方案下Cpt径向分布

    Figure 18.  Radial distribution of Cpt under different location schemes

    图 19  原型方案以及方案9的出口总压损失、轴向涡量和二次流

    Figure 19.  Total pressure loss, axial vortex and secondary flow of the ORI and Case 9 outlet

    图 20  不同位置方案下的三维涡系结构

    Figure 20.  Three-dimensional vortex structure under different position schemes

    图 21  改型前后叶栅通道内涡系结构

    Figure 21.  Vortex structure in the cascade passage before and after modification

    表  1  叶栅几何参数

    Table  1.   Cascade geometry parameters

    参数数值
    弦长 c/mm40
    叶高 H/mm100
    节距 t/mm30
    安装角 γ/(°)60
    几何进口角 α/(°)46.23
    几何出口角 β/(°)76.93
    进口马赫数 Ma0.7
    下载: 导出CSV

    表  2  不同高度方案

    Table  2.   Different height schemes

    方案编号涡流发生器高度 h/mm
    11
    22
    33
    44
    55
    下载: 导出CSV

    表  3  不同弦长方案

    Table  3.   Different chord schemes

    方案编号涡流发生器弦长与叶片弦长之比
    20.50
    60.25
    70.75
    下载: 导出CSV

    表  4  不同位置方案

    Table  4.   Different location schemes

    方案编号 $ \overline {t_{}^{}} $/%
    6 5
    8 10
    9 15
    10 20
    11 25
    下载: 导出CSV
  • [1] YOON Y S,SONG S J,SHIN H W. Influence of flow coefficient,stagger angle,and tip clearance on tip vortex in axial compressors[J]. Journal of Fluids Engineering,2006,128(6): 1274-1280. doi: 10.1115/1.2354522
    [2] HAH C,LOELLBACH J. Development of hub corner stall and its influence on the performance of axial compressor blade rows[J]. Journal of Turbomachinery,1999,121(1): 67-77. doi: 10.1115/1.2841235
    [3] DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299
    [4] 李涛,吴亚东,欧阳华. 涡流发生器对轴流压气机叶顶流动不稳定性影响的实验研究[J]. 推进技术,2021,42(12): 2723-2733. LI Tao,WU Yadong,OUYANG Hua. Experimental research on effects of vortex generators on tip flow instability of an axial compressor[J]. Journal of Propulsion Technology,2021,42(12): 2723-2733. (in Chinese

    LI Tao, WU Yadong, OUYANG Hua. Experimental research on effects of vortex generators on tip flow instability of an axial compressor[J]. Journal of Propulsion Technology, 2021, 42(12): 2723-2733. (in Chinese)
    [5] 江瑞芳,赵振宙,冯俊鑫,等. 涡流发生器对风力机叶片流动控制的数值研究[J]. 工程热物理学报,2021,42(12): 3170-3177. JIANG Ruifang,ZHAO Zhenzhou,FENG Junxin,et al. Numerical study on flow control of wind turbine blade by vortex generators[J]. Journal of Engineering Thermophysics,2021,42(12): 3170-3177. (in Chinese

    JIANG Ruifang, ZHAO Zhenzhou, FENG Junxin, et al. Numerical study on flow control of wind turbine blade by vortex generators[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3170-3177. (in Chinese)
    [6] 吴瀚,王建宏,黄伟,等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报,2021,42(6): 025371. WU Han,WANG Jianhong,HUANG Wei,et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 025371. (in Chinese

    WU Han, WANG Jianhong, HUANG Wei, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371. (in Chinese)
    [7] GUO Shuang,CHEN Shaowen,SONG Yanping,et al. Effects of boundary layer suction on aerodynamic performance in a high-load compressor cascade[J]. Chinese Journal of Aeronautics,2010,23(2): 179-186. doi: 10.1016/S1000-9361(09)60202-8
    [8] SUDER K L,HATHAWAY M D,THORP S A,et al. Compressor stability enhancement using discrete tip injection[J]. Journal of Turbomachinery,2001,123(1): 14-23. doi: 10.1115/1.1330272
    [9] WU Y,ZHAO X H,LI Y H,et al. Corner separation control in a highly loaded compressor cascade using plasma aerodynamic actuation[C]//Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition. Copenhagen,Denmark: ASME,2013: 323-332.
    [10] LI Yinghong,WU Yun,ZHOU Min,et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids,2010,48(6): 1015-1023. doi: 10.1007/s00348-009-0787-2
    [11] HARVEY N W. Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics: Part Ⅰ linear cascade investigation[C]//Proceedings of ASME Turbo Expo: Power for Land,Sea,and Air. Berlin,Germany: ASME,2009: 543-555.
    [12] LIU Xiwu,JIN Donghai,GUI Xingmin. Investigation of non-axisymmetric endwall contouring in a compressor cascade[J]. Journal of Thermal Science,2017,26(6): 490-504. doi: 10.1007/s11630-017-0966-z
    [13] 杨凌,陈韵之,钟兢军. 不同形状吸力面翼刀对叶栅二次流及性能的影响[J]. 工程热物理学报,2022,43(1): 50-57. YANG Ling,CHEN Yunzhi,ZHONG Jingjun. Effects of suction surface fences with different profiles on secondary flow and performance of compressor cascade[J] Journal of Engineering Thermophysics,2022,43(1): 50-57. (in Chinese

    YANG Ling, CHEN Yunzhi, ZHONG Jingjun. Effects of suction surface fences with different profiles on secondary flow and performance of compressor cascade[J] Journal of Engineering Thermophysics, 2022, 43(1): 50-57. (in Chinese)
    [14] MOON Y J,KOH S R. Counter-rotating streamwise vortex formation in the turbine cascade with endwall fence[J]. Computers and Fluids,2001,30(4): 473-490. doi: 10.1016/S0045-7930(00)00026-8
    [15] DEICH M E,GUBALEV A B,FILIPPOV G A,et al. A new method of profiling the guide vane cascade of stage with small ratios diameter to length[J]. Teplienergetika,1962,8(8): 42-46.
    [16] GÜMMER V,WENGER U,KAU H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[J]. Journal of Turbomachinery,2001,123(1): 40-48. doi: 10.1115/1.1330268
    [17] TAYLOR H D. Summary report on vortex generators[M]. Connecticut,US: United Aircraft Corporation: Research Department,1950.
    [18] LAW C H,WENNERSTROM A J,BUZZELL W A. The use of vortex generators as inexpensive compressor casing treatment[R]. Warrendale,US: SAE International,1976.
    [19] CHIMA R V. Computational modeling of vortex generators for turbomachinery[C]//Proceedings of ASME Turbo Expo: Power for Land,Sea,and Air. Berlin,Germany: ASME,2009: 1229-1238.
    [20] MEYER R,BECHERT D W,HAGE W. Secondary flow control on compressor blades to improve the performance of axial turbomachines[R]. Prague,Czech Republic: the 5th European Turbomachinery Conference,2003.
    [21] HERGT A,MEYER R,ENGEL K. Experimental investigation of flow control in compressor cascades[C]//Proceedings of ASME Turbo Expo 2006: Power for Land,Sea,and Air. Barcelona,Spain: ASME,2008: 231-240.
    [22] HERGT A,MEYER R,ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery,2013,135(2): 021026.1-021026.10.
    [23] DIAA A M,EL-DOSOKY M F,AHMED M A,et al. Boundary layer control of an axial compressor cascade using nonconventional vortex generators[C]//Proceedings of ASME International Mechanical Engineering Congress and Exposition. Houston,US: ASME,2015: 13-19.
    [24] HU J,WANG R,WU P,et al. Synthetic separation control using vortex generator and slot jet in a high load compressor cascade[J]. Journal of Applied Fluid Mechanics,2017,10(5): 1305-1318. doi: 10.18869/acadpub.jafm.73.242.27352
    [25] MA Shan,CHU Wuli,ZHANG Haoguang,et al. Effects of modified micro-vortex generators on aerodynamic performance in a high-load compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers: Part A Journal of Power and Energy,2019,233(3): 309-323. doi: 10.1177/0957650918790018
    [26] MA Shan,CHU Wuli,ZHANG Haoguang,et al. Study of combined flow control strategies based on a quantitative analysis in a high-load compressor cascade[J]. Aerospace Science and Technology,2019,93: 105346.1-105346.13.
    [27] LI Jiabin,JI Lucheng. Efficient design method for applying vortex generators in turbomachinery[J]. Journal of Turbomachinery,2019,141(8): 081005.1-081005.12.
    [28] HU Jiaguo,WANG Rugen,HUANG Danqin. Improvements of performance and stability of a single-stage transonic axial compressor using a combined flow control approach[J]. Aerospace Science and Technology,2019,86: 283-295. doi: 10.1016/j.ast.2018.12.033
    [29] XU Wenfeng,SUN Peng,YANG Guogang. Effect of the bionic chamber position on the aerodynamic performance in a transonic compressor cascade[J]. Aerospace Science and Technology,2021,119: 107106.1-107106.10.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  88
  • HTML浏览量:  47
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回