Improved design for anti-bird impact of aero-engine fan rotor blades
-
摘要:
为提高航空发动机风扇转子叶片抗鸟撞能力,基于光滑粒子流体动力学(SPH)方法及LS-DYNA显式动力学分析软件对风扇转子叶片的抗鸟撞能力进行评估,分析了不同关键设计参数对气动性能和叶片抗鸟撞性能的影响。结果表明:真实鸟体撞击风扇转子叶片后,主要造成叶片前缘变形、卷边和撕裂。风扇气动性能随叶片前缘半径增大而降低,当前缘半径超过0.25 mm后,风扇的稳定裕度急剧下降;最大厚度位置后移对风扇气动性能有益,但风扇转子叶片抗鸟撞能力下降。在保证风扇气动性能的前提下,通过合理选取设计参数,对风扇转子叶片进行改进设计,改进后叶片的抗鸟撞能力由30 g提高到50 g,抗鸟撞能力得到明显提升。
-
关键词:
- 风扇转子叶片 /
- 光滑粒子流体动力学(SPH) /
- 鸟撞 /
- 改进设计 /
- 气动性能
Abstract:In order to improve the bird impact resistance of aero-engine fan rotor blades, the smoothed particle hydrodynamics (SPH) method and LS-DYNA software were used to evaluate the bird impact resistance of fan rotor blades, and the effects of key design parameters on aerodynamic performance and bird impact resistance were analyzed. The results indicated that the realistic bird impact mainly caused deformation, curling, and tearing of rotor blade leading edge. The aerodynamic performance decreased with the increase of the leading edge radius, the stability margin sharply decreased as the leading edge radius was larger than 0.25 mm. The maximum thickness position moving afterward was beneficial for aerodynamic performance, while the bird impact resistance decreased. By selecting reasonable design parameters to maintain the aerodynamic performance, the fan rotor blade design was improved. The anti-bird ability of fan rotor blade had been significantly increased from 30 g to 50 g.
-
参数 数值 基本材料
性能密度ρ/(kg/m3) 4440 切变模量G/GPa 44 弹性模量E/GPa 115 泊松比ν 0.34 熔点Tmetl/℃ 1640 比定压热容cp/(J/(kg·℃)) 611 Johnson-Cook
本构模型A/MPa 862.40 B/MPa 1084.64 n 0.341 C 0.01823 m 0.76728 D1 −0.09 D2 0.27 D3 0.48 D4 0.014 D5 3.87 Gruneisen
状态方程C/(m/s) 5130 S1 1.028 S2 0 S3 0 γ0 1.23 $a$ 0.17 参数 数值 密度/(kg/m3) 900 弹性模量/GPa 10.0 泊松比 0.3 屈服应力/MPa 1.0 切变模量/MPa 5.0 失效应变 1.25 表 3 风扇叶片改进前后抗鸟撞能力对比
Table 3. Comparison of bird impact resistance of fan blades before and after improvement
参数 数值 原始 改进后 降低幅度/% 叶片展向最大
变形量/mm25.9 16.7 35.5 变形叶片数 10 6 40 塑性应变大于0.1
区域的叶片表面积/mm2587 318 45.8 -
[1] DOLBEER R A, WRIGHT S E, WELLER J. Wildlife strikes to civil aircraft in the United States 1990-2008[R]. FAA National Wildlife Strike Database, Serial report number15, 2009. [2] YORK D L,CUMMINGS J L,ENGEMAN R M,et al. Hazing and movements of Canada geese near Elmendorf Air Force Base in Anchorage, Alaska[J]. International Biodeterioration & Biodegradation,2000,45(3/4): 103-110. [3] 陈伟,刘璐璐,宣海军,等. 突加高能载荷作用下航空发动机结构动态响应及安全性综述[J]. 推进技术,2020,41(9): 2099-2119. doi: 10.13675/j.cnki.tjjs.200320CHEN Wei,LIU Lulu,XUAN Haijun,et al. Review on dynamic response and safety of engine structure under sudden high energy load[J]. Journal of Propulsion Technology,2020,41(9): 2099-2119. (in Chinese) doi: 10.13675/j.cnki.tjjs.200320 [4] 中国人民解放军总装备部. 航空涡轮喷气和涡轮风扇发动机通用规范: GJB241A-2010[S]. 北京: 中国人民解放军总装备部, 2010: 53-56. [5] 中国民航总局. 中国民用航空规章航空发动机适航规定: CCAR33-R2[S]. 北京: 中国民用航空总局, 2011: 43-53. [6] 吴晶峰,侯亮,宋建宇,等. 爬升阶段涡扇发动机核心流道吸鸟适航审定[J]. 航空动力学报,2023,38(4): 1017-1024. doi: 10.13224/j.cnki.jasp.20210497WU Jingfeng,HOU Liang,SONG Jianyu,et al. Airworthiness certification of turbo fan engine core duct bird ingestion during climbing phase[J]. Journal of Aerospace Power,2023,38(4): 1017-1024. (in Chinese) doi: 10.13224/j.cnki.jasp.20210497 [7] 王庆平,王飞,赵海凤. 涡轴发动机吞鸟试验方法及试验验证[J]. 航空发动机,2022,48(2): 1-6. doi: 10.13477/j.cnki.aeroengine.2022.02.001WANG Qingping,WANG Fei,ZHAO Haifeng. Test method and test verification of bird ingestion for a turboshaft engine[J]. Aeroengine,2022,48(2): 1-6. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2022.02.001 [8] 张永强,贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效[J]. 高压物理学报,2022,36(5): 77-87.ZHANG Yongqiang,JIA Lin. Dynamic response and damage failure behavior of TC4 titanium alloy hollow fan blade[J]. Chinese Journal of High Pressure Physics,2022,36(5): 77-87. (in Chinese) [9] MEGUID S A,MAO R H,NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade[J]. International Journal of Impact Engineering,2008,35(6): 487-498. doi: 10.1016/j.ijimpeng.2007.04.008 [10] LIU Jun,LI Yulong. Numerical simulation of a rotary engine primary compressor impacted by bird[J]. Chinese Journal of Aeronautics,2013,26(4): 926-934. doi: 10.1016/j.cja.2013.06.006 [11] 郭鹏,刘志远,张桂昌,等. 鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究[J]. 振动与冲击,2021,40(12): 124-131. doi: 10.13465/j.cnki.jvs.2021.12.016GUO Peng,LIU Zhiyuan,ZHANG Guichang,et al. Study on effect of bird impact position and attitude on fan blade damage[J]. Journal of Vibration and Shock,2021,40(12): 124-131. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.12.016 [12] ZHANG Zhuo,LI Liang,ZHANG Dingguo. Effect of arbitrary yaw/pitch angle in bird strike numerical simulation using SPH method[J]. Aerospace Science and Technology,2018,81: 284-293. doi: 10.1016/j.ast.2018.08.010 [13] 张海洋,蔚夺魁,王相平,等. 鸟撞击风扇转子叶片损伤模拟与试验研究[J]. 推进技术,2015,36(9): 1382-1388. doi: 10.13675/j.cnki.tjjs.2015.09.015ZHANG Haiyang,YU Duokui,WANG Xiangping,et al. Numerical and experimental investigation of damage of bird impact on fan blades[J]. Journal of Propulsion Technology,2015,36(9): 1382-1388. (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.09.015 [14] 吴一帆,郑百林,杨彪. 考虑鸟撞的航空发动机叶片动态拓扑优化设计[J]. 航空动力学报,2018,33(8): 1923-1932. doi: 10.13224/j.cnki.jasp.2018.08.016WU Yifan,ZHENG Bailin,YANG Biao. Topological optimization design of aero-engine blade considering bird strike[J]. Journal of Aerospace Power,2018,33(8): 1923-1932. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.08.016 [15] 张海洋,王相平,杜少辉,等. 航空发动机风扇叶片的抗鸟撞设计[J]. 航空动力学报,2020,35(6): 1157-1168. doi: 10.13224/j.cnki.jasp.2020.06.005ZHANG Haiyang,WANG Xiangping,DU Shaohui,et al. Design for anti-bird impact of aero-engine fan blade[J]. Journal of Aerospace Power,2020,35(6): 1157-1168. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.06.005 [16] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal,1977,82: 1013. doi: 10.1086/112164 [17] GINGOLD R A,MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389. doi: 10.1093/mnras/181.3.375 [18] 刘小川,王计真,白春玉. 人工鸟研究进展及在飞机结构抗鸟撞中的应用[J]. 振动与冲击,2021,40(12): 80-89. doi: 10.13465/j.cnki.jvs.2021.12.011LIU Xiaochuan,WANG Jizhen,BAI Chunyu. Overview on artificial bird and application on the structural bird-strike[J]. Journal of Vibration and Shock,2021,40(12): 80-89. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.12.011 [19] LIU Lizhong,MA Zhenzhu,PANG Shihong,et al. Investigation of the bird shape effects on the simulation results of bird striking laminated aircraft windshields[J]. Advanced Materials Research,2011,418/419/420: 72-76. [20] VIGNJEVIC R,ORŁOWSKI M,DE VUYST T,et al. A parametric study of bird strike on engine blades[J]. International Journal of Impact Engineering,2013,60: 44-57. doi: 10.1016/j.ijimpeng.2013.04.003 [21] 潘辉. 叶片外物损伤的特征分析及模拟试验研究[D]. 南京: 南京航空航天大学, 2012.PAN Hui. Research on damage characteristics and simulation test of foreign object damage of blade[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese) [22] 白金泽. 基于神经网络方法的鸟撞飞机风挡反问题研究[D]. 西安: 西北工业大学, 2003.BAI Jinze. Inverse issue study of bird-impact to aircraft windshield based on neural network method[D]. Xi’an: Northwestern Polytechnical University, 2003. (in Chinese)