留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机风扇转子叶片抗鸟撞改进设计

汪松柏 牛潇 霍嘉欣 张震相 江柏均 刘昭威

汪松柏, 牛潇, 霍嘉欣, 等. 航空发动机风扇转子叶片抗鸟撞改进设计[J]. 航空动力学报, 2024, 39(2):20230494 doi: 10.13224/j.cnki.jasp.20230494
引用本文: 汪松柏, 牛潇, 霍嘉欣, 等. 航空发动机风扇转子叶片抗鸟撞改进设计[J]. 航空动力学报, 2024, 39(2):20230494 doi: 10.13224/j.cnki.jasp.20230494
WANG Songbai, NIU Xiao, HUO Jiaxin, et al. Improved design for anti-bird impact of aero-engine fan rotor blades[J]. Journal of Aerospace Power, 2024, 39(2):20230494 doi: 10.13224/j.cnki.jasp.20230494
Citation: WANG Songbai, NIU Xiao, HUO Jiaxin, et al. Improved design for anti-bird impact of aero-engine fan rotor blades[J]. Journal of Aerospace Power, 2024, 39(2):20230494 doi: 10.13224/j.cnki.jasp.20230494

航空发动机风扇转子叶片抗鸟撞改进设计

doi: 10.13224/j.cnki.jasp.20230494
基金项目: 四川省科技计划项目(2021YFG0182,2021ZDZX0003)
详细信息
    作者简介:

    汪松柏(1989-),男,高级工程师,博士生,主要从事航空发动机压气机设计研究。E-mail:wsb_buaa@163.com

  • 中图分类号: V231.1

Improved design for anti-bird impact of aero-engine fan rotor blades

  • 摘要:

    为提高航空发动机风扇转子叶片抗鸟撞能力,基于光滑粒子流体动力学(SPH)方法及LS-DYNA显式动力学分析软件对风扇转子叶片的抗鸟撞能力进行评估,分析了不同关键设计参数对气动性能和叶片抗鸟撞性能的影响。结果表明:真实鸟体撞击风扇转子叶片后,主要造成叶片前缘变形、卷边和撕裂。风扇气动性能随叶片前缘半径增大而降低,当前缘半径超过0.25 mm后,风扇的稳定裕度急剧下降;最大厚度位置后移对风扇气动性能有益,但风扇转子叶片抗鸟撞能力下降。在保证风扇气动性能的前提下,通过合理选取设计参数,对风扇转子叶片进行改进设计,改进后叶片的抗鸟撞能力由30 g提高到50 g,抗鸟撞能力得到明显提升。

     

  • 图 1  鸟体的SPH模型

    Figure 1.  SPH model for bird

    图 2  鸟撞试验后风扇前缘变形和损伤

    Figure 2.  Deformation and damage of fan leading edge after the bird impact test

    图 3  风扇叶片鸟撞有限元模型

    Figure 3.  Bird impact finite element model for fan blade

    图 4  风扇转子叶片鸟撞后的有效塑性应变

    Figure 4.  Effective plastic strain distribution of the fan rotor blades after bird compact

    图 5  数值模拟和试验结果的展向变形对比

    Figure 5.  Span deformation comparison between numerical simulation and experimental results

    图 6  风扇转子叶片结构

    Figure 6.  Blade structure of the fan rotor

    图 7  前缘半径对风扇气动性能的影响

    Figure 7.  Effect of leading edge radius on fan performance

    图 8  最大厚度位置对风扇气动性能的影响

    Figure 8.  Effect of maximum thickness position on fan performance

    图 9  90%叶高截面静熵的对比

    Figure 9.  Comparison of static entropy at 90% span

    图 10  塑性应变大于0.1区域的叶片表面积随最大厚度位置变化

    Figure 10.  Surface area of blade with plastic strain greater than 0.1 changing with the maximum thickness position

    图 11  最大厚度位置为0.55时鸟撞后叶片的塑性应变

    Figure 11.  Plastic strain of blades after bird impact on 0.55 maximum thickness position

    图 12  前缘半径沿叶高方向的分布

    Figure 12.  Distribution of leading edge radius along fan blade height

    图 13  最大厚度位置沿叶高方向的分布

    Figure 13.  Distribution of maximum thickness position along fan blade height

    图 14  风扇叶片改进前后叶型的对比

    Figure 14.  Comparison of fan blades profile before and after improvement

    图 15  风扇部件改进前后的试验特性对比

    Figure 15.  Comparison of fan experimental performance before and after improvement

    图 16  50 g鸟体撞击改进后风扇转子叶片的全过程模拟

    Figure 16.  Process simulation of 50 g bird impact with improved design of fan rotor blade

    表  1  TC4材料参数[21]

    Table  1.   Material parameters of TC4[21]

    参数数值
    基本材料
    性能
    密度ρ/(kg/m34440
    切变模量G/GPa44
    弹性模量E/GPa115
    泊松比ν0.34
    熔点Tmetl/℃1640
    比定压热容cp/(J/(kg·℃))611
    Johnson-Cook
    本构模型
    A/MPa862.40
    B/MPa1084.64
    n0.341
    C0.01823
    m0.76728
    D1−0.09
    D20.27
    D30.48
    D40.014
    D53.87
    Gruneisen
    状态方程
    C/(m/s)5130
    S11.028
    S20
    S30
    γ01.23
    $a$0.17
    下载: 导出CSV

    表  2  鸟体的材料参数[22]

    Table  2.   Material parameters of bird[22]

    参数数值
    密度/(kg/m3900
    弹性模量/GPa10.0
    泊松比0.3
    屈服应力/MPa1.0
    切变模量/MPa5.0
    失效应变1.25
    下载: 导出CSV

    表  3  风扇叶片改进前后抗鸟撞能力对比

    Table  3.   Comparison of bird impact resistance of fan blades before and after improvement

    参数数值
    原始改进后降低幅度/%
    叶片展向最大
    变形量/mm
    25.916.735.5
    变形叶片数10640
    塑性应变大于0.1
    区域的叶片表面积/mm2
    58731845.8
    下载: 导出CSV
  • [1] DOLBEER R A, WRIGHT S E, WELLER J. Wildlife strikes to civil aircraft in the United States 1990-2008[R]. FAA National Wildlife Strike Database, Serial report number15, 2009.
    [2] YORK D L,CUMMINGS J L,ENGEMAN R M,et al. Hazing and movements of Canada geese near Elmendorf Air Force Base in Anchorage, Alaska[J]. International Biodeterioration & Biodegradation,2000,45(3/4): 103-110.
    [3] 陈伟,刘璐璐,宣海军,等. 突加高能载荷作用下航空发动机结构动态响应及安全性综述[J]. 推进技术,2020,41(9): 2099-2119. doi: 10.13675/j.cnki.tjjs.200320

    CHEN Wei,LIU Lulu,XUAN Haijun,et al. Review on dynamic response and safety of engine structure under sudden high energy load[J]. Journal of Propulsion Technology,2020,41(9): 2099-2119. (in Chinese) doi: 10.13675/j.cnki.tjjs.200320
    [4] 中国人民解放军总装备部. 航空涡轮喷气和涡轮风扇发动机通用规范: GJB241A-2010[S]. 北京: 中国人民解放军总装备部, 2010: 53-56.
    [5] 中国民航总局. 中国民用航空规章航空发动机适航规定: CCAR33-R2[S]. 北京: 中国民用航空总局, 2011: 43-53.
    [6] 吴晶峰,侯亮,宋建宇,等. 爬升阶段涡扇发动机核心流道吸鸟适航审定[J]. 航空动力学报,2023,38(4): 1017-1024. doi: 10.13224/j.cnki.jasp.20210497

    WU Jingfeng,HOU Liang,SONG Jianyu,et al. Airworthiness certification of turbo fan engine core duct bird ingestion during climbing phase[J]. Journal of Aerospace Power,2023,38(4): 1017-1024. (in Chinese) doi: 10.13224/j.cnki.jasp.20210497
    [7] 王庆平,王飞,赵海凤. 涡轴发动机吞鸟试验方法及试验验证[J]. 航空发动机,2022,48(2): 1-6. doi: 10.13477/j.cnki.aeroengine.2022.02.001

    WANG Qingping,WANG Fei,ZHAO Haifeng. Test method and test verification of bird ingestion for a turboshaft engine[J]. Aeroengine,2022,48(2): 1-6. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2022.02.001
    [8] 张永强,贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效[J]. 高压物理学报,2022,36(5): 77-87.

    ZHANG Yongqiang,JIA Lin. Dynamic response and damage failure behavior of TC4 titanium alloy hollow fan blade[J]. Chinese Journal of High Pressure Physics,2022,36(5): 77-87. (in Chinese)
    [9] MEGUID S A,MAO R H,NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade[J]. International Journal of Impact Engineering,2008,35(6): 487-498. doi: 10.1016/j.ijimpeng.2007.04.008
    [10] LIU Jun,LI Yulong. Numerical simulation of a rotary engine primary compressor impacted by bird[J]. Chinese Journal of Aeronautics,2013,26(4): 926-934. doi: 10.1016/j.cja.2013.06.006
    [11] 郭鹏,刘志远,张桂昌,等. 鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究[J]. 振动与冲击,2021,40(12): 124-131. doi: 10.13465/j.cnki.jvs.2021.12.016

    GUO Peng,LIU Zhiyuan,ZHANG Guichang,et al. Study on effect of bird impact position and attitude on fan blade damage[J]. Journal of Vibration and Shock,2021,40(12): 124-131. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.12.016
    [12] ZHANG Zhuo,LI Liang,ZHANG Dingguo. Effect of arbitrary yaw/pitch angle in bird strike numerical simulation using SPH method[J]. Aerospace Science and Technology,2018,81: 284-293. doi: 10.1016/j.ast.2018.08.010
    [13] 张海洋,蔚夺魁,王相平,等. 鸟撞击风扇转子叶片损伤模拟与试验研究[J]. 推进技术,2015,36(9): 1382-1388. doi: 10.13675/j.cnki.tjjs.2015.09.015

    ZHANG Haiyang,YU Duokui,WANG Xiangping,et al. Numerical and experimental investigation of damage of bird impact on fan blades[J]. Journal of Propulsion Technology,2015,36(9): 1382-1388. (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.09.015
    [14] 吴一帆,郑百林,杨彪. 考虑鸟撞的航空发动机叶片动态拓扑优化设计[J]. 航空动力学报,2018,33(8): 1923-1932. doi: 10.13224/j.cnki.jasp.2018.08.016

    WU Yifan,ZHENG Bailin,YANG Biao. Topological optimization design of aero-engine blade considering bird strike[J]. Journal of Aerospace Power,2018,33(8): 1923-1932. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.08.016
    [15] 张海洋,王相平,杜少辉,等. 航空发动机风扇叶片的抗鸟撞设计[J]. 航空动力学报,2020,35(6): 1157-1168. doi: 10.13224/j.cnki.jasp.2020.06.005

    ZHANG Haiyang,WANG Xiangping,DU Shaohui,et al. Design for anti-bird impact of aero-engine fan blade[J]. Journal of Aerospace Power,2020,35(6): 1157-1168. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.06.005
    [16] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal,1977,82: 1013. doi: 10.1086/112164
    [17] GINGOLD R A,MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389. doi: 10.1093/mnras/181.3.375
    [18] 刘小川,王计真,白春玉. 人工鸟研究进展及在飞机结构抗鸟撞中的应用[J]. 振动与冲击,2021,40(12): 80-89. doi: 10.13465/j.cnki.jvs.2021.12.011

    LIU Xiaochuan,WANG Jizhen,BAI Chunyu. Overview on artificial bird and application on the structural bird-strike[J]. Journal of Vibration and Shock,2021,40(12): 80-89. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.12.011
    [19] LIU Lizhong,MA Zhenzhu,PANG Shihong,et al. Investigation of the bird shape effects on the simulation results of bird striking laminated aircraft windshields[J]. Advanced Materials Research,2011,418/419/420: 72-76.
    [20] VIGNJEVIC R,ORŁOWSKI M,DE VUYST T,et al. A parametric study of bird strike on engine blades[J]. International Journal of Impact Engineering,2013,60: 44-57. doi: 10.1016/j.ijimpeng.2013.04.003
    [21] 潘辉. 叶片外物损伤的特征分析及模拟试验研究[D]. 南京: 南京航空航天大学, 2012.

    PAN Hui. Research on damage characteristics and simulation test of foreign object damage of blade[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [22] 白金泽. 基于神经网络方法的鸟撞飞机风挡反问题研究[D]. 西安: 西北工业大学, 2003.

    BAI Jinze. Inverse issue study of bird-impact to aircraft windshield based on neural network method[D]. Xi’an: Northwestern Polytechnical University, 2003. (in Chinese)
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  215
  • HTML浏览量:  69
  • PDF量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 网络出版日期:  2023-10-25

目录

    /

    返回文章
    返回