A rolling bearing fault diagnosis method based on MTF-MSMCNN with small sample
-
摘要:
针对样本数量不足以及工况条件复杂导致故障识别精度低下的问题,提出一种基于马尔科夫转移场与多维监督卷积神经网络(Markov transition field and multidimensional supervised module convolutional neural networks, MTF-MSMCNN)的小样本滚动轴承故障诊断方法。采用MTF编码方式将一维滚动轴承信号转化为二维特征图像,使其保留时间相关性;提出多维监督模块(Multidimensional supervision module, MSM),在空间维度和通道维度监测重要故障特征并自适应赋予权重,提升模型捕捉关键特征的能力;将MSM嵌入到卷积神经网络中,构建出MSMCNN模型;通过试验构建复杂工况条件,将MTF图像输入到所提模型进行故障诊断,并运用两种数据集验证模型有效性。试验结果表明,MTF-MSMCNN在每类故障训练集样本仅有10个且在0 dB噪声污染下故障诊断精度依然可达90%左右,对比其他诊断模型,本文所提方法在小样本、变工况以及噪声干扰条件下具有更高的识别准确率、更强的泛化能力以及抗噪性能。
Abstract:Considering the problem of low fault identification accuracy caused by insufficient sample size and complex working conditions, a fault diagnosis method of rolling bearing with small sample based on Markov transition field and multidimensional supervised module convolutional neural network (MTF-MSMCNN) was proposed. The one-dimensional rolling bearing signal was transformed into two-dimensional feature image using MTF coding method to preserve temporal correlation. Multidimensional supervision module (MSM) was presented to monitor important fault features in both spatial and channel dimension and assign weight adaptively, which can improve the model's ability to capture key features. MSM was embedded into the convolutional neural network to build a MSMCNN model. The complex working conditions were constructed through experiments, and the MTF images were input into the MTF-MSMCNN network model for fault diagnosis. Two data sets were used to verify the model validity. The experimental results showed that the MTF-MSMCNN had only 10 samples in each type of fault training set, and its fault diagnosis accuracy can still reach about 90% under 0 dB noise pollution. Compared with other diagnostic models, the method proposed had higher recognition accuracy, stronger generalization ability and anti-noise performance under the conditions of small samples, variable working conditions and noise interference.
-
表 1 数据集1
Table 1. Data set 1
故障直径/mm 0 0.18 0.36 负载/kW 故障部位 正常 内圈 外圈 滚动体 内圈 外圈 滚动体 标签 0 1 2 3 4 5 6 工况A样本数量 训练集 40 40 40 40 40 40 40 0.7457 测试集 100 100 100 100 100 100 100 工况B样本数量 训练集 40 40 40 40 40 40 40 1.4914 测试集 100 100 100 100 100 100 100 工况C样本数量 训练集 40 40 40 40 40 40 40 2.2371 测试集 100 100 100 100 100 100 100 表 2 数据集2
Table 2. Data set 2
故障直径/mm 0 0.6 1.2 转速/(r/min) 故障部位 正常 内圈 外圈 滚动体 内圈 外圈 滚动体 标签 0 1 2 3 4 5 6 工况D样本数量 训练集 40 40 40 40 40 40 40 1200 测试集 100 100 100 100 100 100 100 工况E样本数量 训练集 40 40 40 40 40 40 40 1300 测试集 100 100 100 100 100 100 100 工况F样本数量 训练集 40 40 40 40 40 40 40 1400 测试集 100 100 100 100 100 100 100 表 3 变负载各模型分类准确率
Table 3. Classification accuracy of each model under variable load
样本数量 试验方法 变负载分类准确率/% A-B A-C B-A B-C C-A C-B 平均 10 MTF-MSMCNN 99.43 97.48 99.40 98.34 97.49 99.01 98.53 MSCNN 98.85 96.66 98.29 97.33 97.05 98.05 97.71 GADF-MSMCNN 75.43 61.14 73.81 62.19 60.86 66.10 66.59 MC_CNN 98.71 95.52 98.43 96.67 96.09 97.81 97.21 ADCNN 98.91 97.43 98.80 97.87 97.47 98.01 98.08 20 MTF-MSMCNN 99.80 98.03 99.71 98.48 98.40 99.26 98.95 MSCNN 99.10 97.04 98.95 97.81 97.71 98.47 98.18 GADF-MSMCNN 79.62 71.05 75.81 72.95 67.71 73.14 73.38 MC_CNN 99.04 97.57 98.90 97.82 97.14 98.71 98.20 ADCNN 98.95 97.98 98.86 98.36 98.19 98.48 98.47 30 MTF-MSMCNN 99.91 98.57 99.89 98.89 98.63 99.66 99.26 MSCNN 99.33 97.52 99.29 97.90 97.86 99.05 98.49 GADF-MSMCNN 81.53 73.33 80.00 74.76 71.52 75.62 76.13 MC_CNN 93.33 98.10 99.21 98.33 97.86 99.14 97.66 ADCNN 99.32 98.37 99.25 98.81 98.51 98.91 98.86 40 MTF-MSMCNN 99.96 98.91 99.94 99.17 99.15 99.92 99.51 MSCNN 99.52 97.81 99.71 98.32 98.09 99.43 98.81 GADF-MSMCNN 83.33 74.45 81.90 77.99 72.57 83.09 78.89 MC_CNN 99.43 98.34 99.28 99.09 98.43 99.38 98.99 ADCNN 99.48 98.76 99.48 98.95 99.05 99.09 99.14 -
[1] 任磊,贾子翟,赖李媛君,等. 数据驱动的工业智能: 现状与展望[J]. 计算机集成制造系统,2022,28(7): 1913-1939.REN Lei,JIA Zidi,LAI Liyuanjun,et al. Data-driven industrial intelligence: current status and future directions[J]. Computer Integrated Manufacturing Systems,2022,28(7): 1913-1939. (in Chinese) [2] RAI A,UPADHYAY S H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J]. Tribology International,2016,96: 289-306. doi: 10.1016/j.triboint.2015.12.037 [3] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786): 504-507. doi: 10.1126/science.1127647 [4] GU Xiaojiao,XIE Yuntao,TIAN Yang,et al. A lightweight neural network based on GAF and ECA for bearing fault diagnosis[J]. Metals,2023,13(4): 822. doi: 10.3390/met13040822 [5] GUO Yurong,MAO Jian,ZHAO Man. Rolling bearing fault diagnosis method based on attention CNN and BiLSTM network[J]. Neural Processing Letters,2023,55(3): 3377-3410. doi: 10.1007/s11063-022-11013-2 [6] JIANG Li,WU Lin,TIAN Yu,et al. An ensemble fault diagnosis method for rotating machinery based on wavelet packet transform and convolutional neural networks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2022,236(24): 11600-11612. doi: 10.1177/09544062221102721 [7] ZHANG Kai,TANG Baoping,QIN Yi,et al. Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks[J]. Mechanical Systems and Signal Processing,2019,131: 243-260. doi: 10.1016/j.ymssp.2019.05.049 [8] 沈长青,汤盛浩,江星星,等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报,2019,55(7): 81-88. doi: 10.3901/JME.2019.07.081SHEN Changqing,TANG Shenghao,JIANG Xingxing,et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering,2019,55(7): 81-88. (in Chinese) doi: 10.3901/JME.2019.07.081 [9] 韩淞宇,邵海东,姜洪开,等. 基于提升卷积神经网络的航空发动机高速轴承智能故障诊断[J]. 航空学报,2022,43(9): 625479.HAN Songyu,SHAO Haidong,JIANG Hongkai,et al. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9): 625479. (in Chinese) [10] 高浩寒,潮群,徐孜,等. 小样本下基于孪生神经网络的柱塞泵故障诊断[J]. 北京航空航天大学学报,2023,49(1): 155-164.GAO Haohan,CHAO Qun,XU Zi,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1): 155-164. (in Chinese) [11] 孙洁娣,刘保,温江涛,等. 类别标签辅助改进稠密网络的变工况轴承故障诊断[J]. 振动与冲击,2022,41(17): 204-212.SUN Jiedi,LIU Bao,WEN Jiangtao,et al. Fault diagnosis of variable condition bearing based on improved dense network aided by class labels[J]. Journal of Vibration and Shock,2022,41(17): 204-212. (in Chinese) [12] WANG Zhiguang, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[R]. Menlo Park, US: 29th AAAI Conference on Artificial Intelligence, 2014. [13] LECUN Y,BOSER B,DENKER J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation,1989,1(4): 541-551. doi: 10.1162/neco.1989.1.4.541 [14] 常春,梅检民,赵慧敏,等. 基于CUM3-CNN的柴油机高压油路故障诊断[J]. 振动与冲击,2023,42(3): 174-180.CHANG Chun,MEI Jianmin,ZHAO Huimin,et al. Fault diagnosis of diesel engine high pressure oil circuit based on CUM3-CNN[J]. Journal of Vibration and Shock,2023,42(3): 174-180. (in Chinese) [15] 赵小强, 张亚洲. 改进CNN的滚动轴承变工况故障诊断[J/OL]. 西安交通大学学报, 2021: 1-11. (2021-08-10). https://kns.cnki.net/kcms/detail/61.1069.T.20210810.1435.007.htmlZHAO Xiaoqiang, ZHANG Yazhou. Improved CNN fault diagnosis method of rolling bearings under variable working conditions[J/OL]. Journal of Xi’an Jiaotong University, 2021: 1-11. (2021-08-10). https://kns.cnki.net/kcms/detail/61.1069.T.20210810.1435.007.html. (in Chinese) [16] 冯李航,陈铭,章伟. 基于增强卷积神经网络的电子鼻长期漂移抑制方法[J]. 仪器仪表学报,2021,42(2): 207-217. doi: 10.19650/j.cnki.cjsi.J2006982FENG Lihang,CHEN Ming,ZHANG Wei. Long-term drift suppression method for electronic nose based on the augmented convolutional neural network[J]. Chinese Journal of Scientific Instrument,2021,42(2): 207-217. (in Chinese) doi: 10.19650/j.cnki.cjsi.J2006982 [17] 朱浩,宁芊,雷印杰,等. 基于注意力机制-Inception-CNN模型的滚动轴承故障分类[J]. 振动与冲击,2020,39(19): 84-93. doi: 10.13465/j.cnki.jvs.2020.19.013ZHU Hao,NING Qian,LEI Yinjie,et al. Fault classification of rolling bearing based on attention mechanism-inception-CNN Model[J]. Journal of Vibration and Shock,2020,39(19): 84-93. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.19.013 [18] SMITH W A,RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing,2015,64: 100-131. [19] ZHANG Lei,LÜ Yong,HUANG Wenyi,et al. Bearing fault diagnosis under various operation conditions using synchrosqueezing transform and improved two-dimensional convolutional neural network[J]. Measurement Science and Technology,2022,33(8): 085002. doi: 10.1088/1361-6501/ac69b1 [20] MANJURUL ISLAM M M,KIM J M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network[J]. Computers in Industry,2019,106: 142-153. doi: 10.1016/j.compind.2019.01.008 -