留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MTF-MSMCNN的小样本滚动轴承故障诊断方法

段晓燕 焦孟萱 雷春丽 李建华

段晓燕, 焦孟萱, 雷春丽, 等. 基于MTF-MSMCNN的小样本滚动轴承故障诊断方法[J]. 航空动力学报, 2024, 39(1):20230517 doi: 10.13224/j.cnki.jasp.20230517
引用本文: 段晓燕, 焦孟萱, 雷春丽, 等. 基于MTF-MSMCNN的小样本滚动轴承故障诊断方法[J]. 航空动力学报, 2024, 39(1):20230517 doi: 10.13224/j.cnki.jasp.20230517
DUAN Xiaoyan, JIAO Mengxuan, LEI Chunli, et al. A rolling bearing fault diagnosis method based on MTF-MSMCNN with small sample[J]. Journal of Aerospace Power, 2024, 39(1):20230517 doi: 10.13224/j.cnki.jasp.20230517
Citation: DUAN Xiaoyan, JIAO Mengxuan, LEI Chunli, et al. A rolling bearing fault diagnosis method based on MTF-MSMCNN with small sample[J]. Journal of Aerospace Power, 2024, 39(1):20230517 doi: 10.13224/j.cnki.jasp.20230517

基于MTF-MSMCNN的小样本滚动轴承故障诊断方法

doi: 10.13224/j.cnki.jasp.20230517
基金项目: 国家自然科学基金(51465035); 甘肃省自然科学基金(20JR5RA466); 兰州理工大学红柳一流学科建设项目
详细信息
    作者简介:

    段晓燕(1981-),女,讲师,硕士,主要从事智能故障诊断研究

    通讯作者:

    李建华(1975-),男,教授、博士生导师,博士,主要从事智能信号处理研究。E-mail:li_jh@vip.sina.com

  • 中图分类号: V263.6;TH133.33

A rolling bearing fault diagnosis method based on MTF-MSMCNN with small sample

  • 摘要:

    针对样本数量不足以及工况条件复杂导致故障识别精度低下的问题,提出一种基于马尔科夫转移场与多维监督卷积神经网络(Markov transition field and multidimensional supervised module convolutional neural networks, MTF-MSMCNN)的小样本滚动轴承故障诊断方法。采用MTF编码方式将一维滚动轴承信号转化为二维特征图像,使其保留时间相关性;提出多维监督模块(Multidimensional supervision module, MSM),在空间维度和通道维度监测重要故障特征并自适应赋予权重,提升模型捕捉关键特征的能力;将MSM嵌入到卷积神经网络中,构建出MSMCNN模型;通过试验构建复杂工况条件,将MTF图像输入到所提模型进行故障诊断,并运用两种数据集验证模型有效性。试验结果表明,MTF-MSMCNN在每类故障训练集样本仅有10个且在0 dB噪声污染下故障诊断精度依然可达90%左右,对比其他诊断模型,本文所提方法在小样本、变工况以及噪声干扰条件下具有更高的识别准确率、更强的泛化能力以及抗噪性能。

     

  • 图 1  MTF图像生成过程

    Figure 1.  MTF image generation process

    图 2  CNN结构

    Figure 2.  CNN structure

    图 3  多维监督模块结构

    Figure 3.  Structure of multidimensional supervision module

    图 4  MTF-MSMCNN故障诊断网络模型

    Figure 4.  MTF-MSMCNN fault diagnosis network model

    图 5  美国凯斯西储大学滚动轴承试验台

    Figure 5.  Rolling bearing test rig of Case Western Reserve University

    图 6  MFS滚动轴承试验台

    Figure 6.  MFS rolling bearing test rig

    图 7  ER-16K故障部位

    Figure 7.  Fault location of ER-16K

    图 8  MTF二维图像

    Figure 8.  Two-dimensional image of MTF

    图 9  变负载箱型图

    Figure 9.  Variable load box type diagram

    图 10  不同样本数量下的混淆矩阵

    Figure 10.  Confusion matrix under different samples

    图 11  变转速各模型分类准确率

    Figure 11.  Classification accuracy of models with variable speed

    图 12  不同模型抗噪雷达图

    Figure 12.  Anti-noise radar of different models

    表  1  数据集1

    Table  1.   Data set 1

    工况样本数量
    D=0 mmD=0.18 mmD=0.36 mm
    正常
    (标签0)
    内圈故障
    (标签1)
    外圈故障
    (标签2)
    滚动体故障
    (标签3)
    内圈故障
    (标签4)
    外圈故障
    (标签5)
    滚动体故障
    (标签6)
    工况A
    P=0.745 7 kW)
    训练集40404040404040
    测试集100100100100100100100
    工况B
    P=1.491 4 kW)
    训练集40404040404040
    测试集100100100100100100100
    工况C
    P=2.237 1 kW)
    训练集40404040404040
    测试集100100100100100100100
    下载: 导出CSV

    表  2  数据集2

    Table  2.   Data set 2

    工况样本数量
    D=0 mmD=0.6 mmD=1.2 mm
    正常
    (标签0)
    内圈故障
    (标签1)
    外圈故障
    (标签2)
    滚动体故障
    (标签3)
    内圈故障
    (标签4)
    外圈故障
    (标签5)
    滚动体故障
    (标签6)
    工况D
    n=1 200 r/min)
    训练集40404040404040
    测试集100100100100100100100
    工况E
    n=1 300 r/min)
    训练集40404040404040
    测试集100100100100100100100
    工况F
    n=1 400 r/min)
    训练集40404040404040
    测试集100100100100100100100
    下载: 导出CSV

    表  3  变负载各模型分类准确率

    Table  3.   Classification accuracy of each model under variable load

    样本数量试验方法变负载分类准确率/%
    A-BA-CB-AB-CC-AC-B平均
    10MTF-MSMCNN99.4397.4899.4098.3497.4999.0198.53
    MSCNN98.8596.6698.2997.3397.0598.0597.71
    GADF-MSMCNN75.4361.1473.8162.1960.8666.1066.59
    MC_CNN98.7195.5298.4396.6796.0997.8197.21
    ADCNN98.9197.4398.8097.8797.4798.0198.08
    20MTF-MSMCNN99.8098.0399.7198.4898.4099.2698.95
    MSCNN99.1097.0498.9597.8197.7198.4798.18
    GADF-MSMCNN79.6271.0575.8172.9567.7173.1473.38
    MC_CNN99.0497.5798.9097.8297.1498.7198.20
    ADCNN98.9597.9898.8698.3698.1998.4898.47
    30MTF-MSMCNN99.9198.5799.8998.8998.6399.6699.26
    MSCNN99.3397.5299.2997.9097.8699.0598.49
    GADF-MSMCNN81.5373.3380.0074.7671.5275.6276.13
    MC_CNN93.3398.1099.2198.3397.8699.1497.66
    ADCNN99.3298.3799.2598.8198.5198.9198.86
    40MTF-MSMCNN99.9698.9199.9499.1799.1599.9299.51
    MSCNN99.5297.8199.7198.3298.0999.4398.81
    GADF-MSMCNN83.3374.4581.9077.9972.5783.0978.89
    MC_CNN99.4398.3499.2899.0998.4399.3898.99
    ADCNN99.4898.7699.4898.9599.0599.0999.14
    下载: 导出CSV
  • [1] 任磊,贾子翟,赖李媛君,等. 数据驱动的工业智能: 现状与展望[J]. 计算机集成制造系统,2022,28(7): 1913-1939.

    REN Lei,JIA Zidi,LAI Liyuanjun,et al. Data-driven industrial intelligence: current status and future directions[J]. Computer Integrated Manufacturing Systems,2022,28(7): 1913-1939. (in Chinese)
    [2] RAI A,UPADHYAY S H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J]. Tribology International,2016,96: 289-306. doi: 10.1016/j.triboint.2015.12.037
    [3] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786): 504-507. doi: 10.1126/science.1127647
    [4] GU Xiaojiao,XIE Yuntao,TIAN Yang,et al. A lightweight neural network based on GAF and ECA for bearing fault diagnosis[J]. Metals,2023,13(4): 822. doi: 10.3390/met13040822
    [5] GUO Yurong,MAO Jian,ZHAO Man. Rolling bearing fault diagnosis method based on attention CNN and BiLSTM network[J]. Neural Processing Letters,2023,55(3): 3377-3410. doi: 10.1007/s11063-022-11013-2
    [6] JIANG Li,WU Lin,TIAN Yu,et al. An ensemble fault diagnosis method for rotating machinery based on wavelet packet transform and convolutional neural networks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2022,236(24): 11600-11612. doi: 10.1177/09544062221102721
    [7] ZHANG Kai,TANG Baoping,QIN Yi,et al. Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks[J]. Mechanical Systems and Signal Processing,2019,131: 243-260. doi: 10.1016/j.ymssp.2019.05.049
    [8] 沈长青,汤盛浩,江星星,等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报,2019,55(7): 81-88. doi: 10.3901/JME.2019.07.081

    SHEN Changqing,TANG Shenghao,JIANG Xingxing,et al. Bearings fault diagnosis based on improved deep belief network by self-individual adaptive learning rate[J]. Journal of Mechanical Engineering,2019,55(7): 81-88. (in Chinese) doi: 10.3901/JME.2019.07.081
    [9] 韩淞宇,邵海东,姜洪开,等. 基于提升卷积神经网络的航空发动机高速轴承智能故障诊断[J]. 航空学报,2022,43(9): 625479.

    HAN Songyu,SHAO Haidong,JIANG Hongkai,et al. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9): 625479. (in Chinese)
    [10] 高浩寒,潮群,徐孜,等. 小样本下基于孪生神经网络的柱塞泵故障诊断[J]. 北京航空航天大学学报,2023,49(1): 155-164.

    GAO Haohan,CHAO Qun,XU Zi,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1): 155-164. (in Chinese)
    [11] 孙洁娣,刘保,温江涛,等. 类别标签辅助改进稠密网络的变工况轴承故障诊断[J]. 振动与冲击,2022,41(17): 204-212.

    SUN Jiedi,LIU Bao,WEN Jiangtao,et al. Fault diagnosis of variable condition bearing based on improved dense network aided by class labels[J]. Journal of Vibration and Shock,2022,41(17): 204-212. (in Chinese)
    [12] WANG Zhiguang, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[R]. Menlo Park, US: 29th AAAI Conference on Artificial Intelligence, 2014.
    [13] LECUN Y,BOSER B,DENKER J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation,1989,1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
    [14] 常春,梅检民,赵慧敏,等. 基于CUM3-CNN的柴油机高压油路故障诊断[J]. 振动与冲击,2023,42(3): 174-180.

    CHANG Chun,MEI Jianmin,ZHAO Huimin,et al. Fault diagnosis of diesel engine high pressure oil circuit based on CUM3-CNN[J]. Journal of Vibration and Shock,2023,42(3): 174-180. (in Chinese)
    [15] 赵小强, 张亚洲. 改进CNN的滚动轴承变工况故障诊断[J/OL]. 西安交通大学学报, 2021: 1-11. (2021-08-10). https://kns.cnki.net/kcms/detail/61.1069.T.20210810.1435.007.html

    ZHAO Xiaoqiang, ZHANG Yazhou. Improved CNN fault diagnosis method of rolling bearings under variable working conditions[J/OL]. Journal of Xi’an Jiaotong University, 2021: 1-11. (2021-08-10). https://kns.cnki.net/kcms/detail/61.1069.T.20210810.1435.007.html. (in Chinese)
    [16] 冯李航,陈铭,章伟. 基于增强卷积神经网络的电子鼻长期漂移抑制方法[J]. 仪器仪表学报,2021,42(2): 207-217. doi: 10.19650/j.cnki.cjsi.J2006982

    FENG Lihang,CHEN Ming,ZHANG Wei. Long-term drift suppression method for electronic nose based on the augmented convolutional neural network[J]. Chinese Journal of Scientific Instrument,2021,42(2): 207-217. (in Chinese) doi: 10.19650/j.cnki.cjsi.J2006982
    [17] 朱浩,宁芊,雷印杰,等. 基于注意力机制-inception-CNN模型的滚动轴承故障分类[J]. 振动与冲击,2020,39(19): 84-93. doi: 10.13465/j.cnki.jvs.2020.19.013

    ZHU Hao,NING Qian,LEI Yinjie,et al. Fault classification of rolling bearing based on attention mechanism-inception-CNN model[J]. Journal of Vibration and Shock,2020,39(19): 84-93. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.19.013
    [18] SMITH W A,RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing,2015,64: 100-131.
    [19] ZHANG Lei,LÜ Yong,HUANG Wenyi,et al. Bearing fault diagnosis under various operation conditions using synchrosqueezing transform and improved two-dimensional convolutional neural network[J]. Measurement Science and Technology,2022,33(8): 085002. doi: 10.1088/1361-6501/ac69b1
    [20] MANJURUL ISLAM M M,KIM J M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network[J]. Computers in Industry,2019,106: 142-153. doi: 10.1016/j.compind.2019.01.008
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  136
  • HTML浏览量:  65
  • PDF量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 网络出版日期:  2023-10-17

目录

    /

    返回文章
    返回