留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

减速器回差的动态特性研究

石照耀 程慧明 俞志勇 左广祥 于渤

石照耀, 程慧明, 俞志勇, 等. 减速器回差的动态特性研究[J]. 航空动力学报, 2024, 39(9):20230541 doi: 10.13224/j.cnki.jasp.20230541
引用本文: 石照耀, 程慧明, 俞志勇, 等. 减速器回差的动态特性研究[J]. 航空动力学报, 2024, 39(9):20230541 doi: 10.13224/j.cnki.jasp.20230541
SHI Zhaoyao, CHENG Huiming, YU Zhiyong, et al. Dynamic characteristics of the lost motion of the reducer[J]. Journal of Aerospace Power, 2024, 39(9):20230541 doi: 10.13224/j.cnki.jasp.20230541
Citation: SHI Zhaoyao, CHENG Huiming, YU Zhiyong, et al. Dynamic characteristics of the lost motion of the reducer[J]. Journal of Aerospace Power, 2024, 39(9):20230541 doi: 10.13224/j.cnki.jasp.20230541

减速器回差的动态特性研究

doi: 10.13224/j.cnki.jasp.20230541
基金项目: 深圳市技术攻关重点项目(JSGG20220831104001002)
详细信息
    作者简介:

    石照耀(1964-),男,教育部长江学者特聘教授、博士生导师,博士,主要从事精密测试技术和仪器、齿轮工程与精密减速器方面的研究。E-mail:shizhaoyao@126.com

  • 中图分类号: V19

Dynamic characteristics of the lost motion of the reducer

  • 摘要:

    基于传动误差对回差的动态特性展开研究,综合考虑转矩、加载速率和转速的影响,解析了回差与传动误差的关系,论证了回差的动态特性,研究发现可通过正反向传动误差相减得到回差。探讨了回差的分类,可分为动态回差、准静态回差和静态回差。给出了回差的测试方法,动态回差可通过双向传动误差法得到,准静态回差和静态回差可以通过滞回曲线法获得。以小型减速器和大型减速器为例,进行了回差的试验研究,验证了回差的动态特性;研究发现动态回差和准静态回差是动态变化的,而静态回差不受加载速率依赖性的影响,试验结果与理论分析一致。最后指出了该研究在理论和工程应用方面的价值。

     

  • 图 1  减速器的滞回模型

    Figure 1.  Hysteretic model of reducer

    图 2  滞回曲线的组成

    Figure 2.  Composition of hysteresis curve

    图 3  减速器回差评定方法

    Figure 3.  Evaluation method for lost motion of reducers

    图 4  正反向传动误差测试原理

    Figure 4.  Measuring principle of the bidirectional transmission error

    图 5  动态回差曲线

    Figure 5.  Dynamic lost motion curve

    图 6  准静态回差测试步骤

    Figure 6.  Steps for quasi-static lost motion testing

    图 7  静态回差测试曲线

    Figure 7.  Static lost motion test curve

    图 8  小型减速器测试台

    Figure 8.  Testing machine for the small-sized reducer

    图 9  大型减速器测试台

    Figure 9.  Testing machine for the large reducer

    图 10  小型减速器实物图

    Figure 10.  Physical picture of the small-sized reducer

    图 11  大型减速器实物图

    Figure 11.  Physical picture of the large reducer

    图 12  小型减速器动态回差测试结果

    Figure 12.  Results of the dynamic test of lost motion for the small-sized reducer

    图 13  大型减速器动态回差测试结果

    Figure 13.  Results of the dynamic test of lost motion for the large reducer

    图 14  采用滞回曲线法对小型减速器进行回差测试

    Figure 14.  Using hysteresis curve method to perform lost motion testing on small-sized reducer

    图 15  采用滞回曲线法对大型精密减速器进行回差测试

    Figure 15.  Using hysteresis curve method to perform lost motion testing on Large precision reducerr

    表  2  减速器参数

    Table  2.   Parameters of the two types of reducers used in the experiments

    类型 额定转矩/(N·m) 最大转速/(r/min) 设计回差
    小型减速器 1.0 70 3.6°
    大型减速器 380.0 70 7′
    下载: 导出CSV

    表  1  测试设备参数

    Table  1.   Test equipment parameters

    指标 小型减速器 大型精密减速器
    转矩范围 0~10 N·m 0~1500 N·m
    转矩测量精度 ±0.1%F.S ±0.1%F.S
    角度测量精度 ±1.44″ ±1″
    下载: 导出CSV

    表  3  动态回差测试条件

    Table  3.   Dynamic lost motion experiment conditions

    类型 负载转矩/
    (N·m)
    转速/(r/min)
    条件1 条件2 条件3
    小型减速器 1.0 1 5 10
    大型精密减速器 380.0 1 5 10
    下载: 导出CSV

    表  4  动态回差试验结果

    Table  4.   Dynamic lost motion experiment result

    类型 结果1 结果2 结果3
    小型减速器/(°) 4.0638 3.9938 3.9314
    大型精密减速器/(′) 7.9829 7.9913 7.9675
    下载: 导出CSV

    表  5  准静态回差测试条件

    Table  5.   Quasi static lost motion experiment conditions

    类型 位置/(°) 转矩时间/( N·m/s)
    条件1 条件2 条件3
    小型减速器 180 0.02 0.05 0.1
    大型精密减速器 180 1 2.5 5
    下载: 导出CSV

    表  6  准静态回差测试结果

    Table  6.   Quasi static lost motion experiment results

    类型结果1结果2结果3
    小型减速器/(°)4.01263.90323.8521
    大型精密减速器/(′)7.99717.46787.2631
    下载: 导出CSV

    表  7  静态回差测试结果

    Table  7.   Static lost motion experiment results

    类型结果1结果2结果3
    小型减速器/(°)2.82582.79712.8012
    大型精密减速器/(′)3.62533.62293.6193
    下载: 导出CSV
  • [1] 国家市场监督管理总局,国家标准化管理委员会. 精密减速器回差测试与评价方法: GB/T 40731-2021[S]. 北京: 中国标准出版社,2021. State Administration for Market Regulation,Standardization Administration of the People’s Republic of China. Method of test and evaluation for lost motion of precision reducer: GB/T 40731-2021[S]. Beijing: Standards Press of China,2021. (in Chinese

    State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Method of test and evaluation for lost motion of precision reducer: GB/T 40731-2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
    [2] 石照耀,徐航,韩方旭,等. 精密减速器回差测量的现状与趋势[J]. 光学 精密工程,2018,26(9): 2150-2158. SHI Zhaoyao,XU Hang,HAN Fangxu,et al. Current status and trends in precision reducer lost motion measurement[J]. Optics and Precision Engineering,2018,26(9): 2150-2158. (in Chinese doi: 10.3788/OPE.20182609.2150

    SHI Zhaoyao, XU Hang, HAN Fangxu, et al. Current status and trends in precision reducer lost motion measurement[J]. Optics and Precision Engineering, 2018, 26(9): 2150-2158. (in Chinese) doi: 10.3788/OPE.20182609.2150
    [3] 石照耀,徐航,林家春,等. 精密减速器回差测量与评价体系研究[J]. 仪器仪表学报,2018,39(6): 56-63. SHI Zhaoyao,XU Hang,LIN Jiachun,et al. Research on measurement and evaluation system of precision reducer lost motion[J]. Chinese Journal of Scientific Instrument,2018,39(6): 56-63. (in Chinese

    SHI Zhaoyao, XU Hang, LIN Jiachun, et al. Research on measurement and evaluation system of precision reducer lost motion[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 56-63. (in Chinese)
    [4] SHI Zhaoyao,CHENG Huiming,YU Bo,et al. Loading rate dependence of reducer hysteresis and its influence on lost motion test[J]. Machines,2022,10(9): 765. doi: 10.3390/machines10090765
    [5] XU Hang,SHI Zhaoyao,YU Bo,et al. Dynamic measurement of the lost motion of precision reducers in robots and the determination of optimal measurement speed[J]. Journal of Advanced Mechanical Design,Systems,and Manufacturing,2019,13(3): 2146.
    [6] 程慧明,石照耀. 减速器滞回模型及其应用[EB/OL]. 北京航空航天大学学报,(2023-05-10) [2024-03-05]. https://doi.org/10.13700/j.bh.1001-5965.2023.0055. CHENG Huiming, SHI Zhaoyao. Hysteresis model of reducer and its application[EB/OL]. Journal of Beijing University of Aeronautics and Astronautics,(2023-05-10) [2024-03-05]. https://doi.org/10.13700/j.bh.1001-5965.2023.0055. (in Chinese

    CHENG Huiming, SHI Zhaoyao. Hysteresis model of reducer and its application[EB/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2023-05-10) [2024-03-05]. https://doi.org/10.13700/j.bh.1001-5965.2023.0055. (in Chinese)
    [7] CHENG Huiming,SHI Zhaoyao,YU Zhiyong,et al. Dynamic torsional stiffness of reducers and its testing method[J]. Applied Sciences,2023,13(16): 9277. doi: 10.3390/app13169277
    [8] 程慧明,石照耀,于渤,等. 服务机器人小型关节回差测量的实验研究[J]. 仪器仪表学报,2020,41(5): 48-57. CHENG Huiming,SHI Zhaoyao,YU Bo,et al. Experiment research on hysteresis measurement of the small-size joint of service robot[J]. Chinese Journal of Scientific Instrument,2020,41(5): 48-57. (in Chinese

    CHENG Huiming, SHI Zhaoyao, YU Bo, et al. Experiment research on hysteresis measurement of the small-size joint of service robot[J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 48-57. (in Chinese)
    [9] 徐航. 精密减速器回差测量与评价体系研究[D]. 北京: 北京工业大学,2018: 27-44. XU Hang. Research on mearsurement and evaluation sysytem of precision reducer lost motion[D]. Beijing: Beijing University of Technology,2018: 27-44. (in Chinese

    XU Hang. Research on mearsurement and evaluation sysytem of precision reducer lost motion[D]. Beijing: Beijing University of Technology, 2018: 27-44. (in Chinese)
    [10] YUE Huijun,WU Xiangkai,SHI Zhaoyao,et al. A comprehensive cycloid pin-wheel precision reducer test platform integrated with a new dynamic measurement method of lost motion[J]. Metrology and Measurement Systems,2021: 207-229.
    [11] 俞志勇,石照耀,程慧明,等. 精密减速器回差试验台的精度特性[J]. 光学 精密工程,2023,31(16): 2372-2382. YU Zhiyong,SHI Zhaoyao,CHENG Huiming,et al. Accuracy characteristic of test bench of lost motion of precision reducer[J]. Optics and Precision Engineering,2023,31(16): 2372-2382. (in Chinese doi: 10.37188/OPE.20233116.2372

    YU Zhiyong, SHI Zhaoyao, CHENG Huiming, et al. Accuracy characteristic of test bench of lost motion of precision reducer[J]. Optics and Precision Engineering, 2023, 31(16): 2372-2382. (in Chinese) doi: 10.37188/OPE.20233116.2372
    [12] HAN Linshan,GUO Fei. Global sensitivity analysis of transmission accuracy for RV-type cycloid-pin drive[J]. Journal of Mechanical Science and Technology,2016,30(3): 1225-1231. doi: 10.1007/s12206-016-0226-2
    [13] HOTAIT M A,KAHRAMAN A. Experiments on the relationship between the dynamic transmission error and the dynamic stress factor of spur gear pairs[J]. Mechanism and Machine Theory,2013,70: 116-128. doi: 10.1016/j.mechmachtheory.2013.07.006
    [14] LIN Ken,CHAN K Y,LEE J. Kinematic error analysis and tolerance allocation of cycloidal gear reducers[J]. Mechanism and Machine Theory,2018,124: 73-91. doi: 10.1016/j.mechmachtheory.2017.12.028
    [15] 石照耀,康焱,林家春. 基于齿轮副整体误差的齿轮动力学模型及其动态特性[J]. 机械工程学报,2010,46(17): 55-61. SHI Zhaoyao,KANG Yan,LIN Jiachun. Comprehensive dynamics model and dynamic response analysis of a spur gear pair based on gear pair integrated error[J]. Journal of Mechanical Engineering,2010,46(17): 55-61. (in Chinese doi: 10.3901/JME.2010.17.055

    SHI Zhaoyao, KANG Yan, LIN Jiachun. Comprehensive dynamics model and dynamic response analysis of a spur gear pair based on gear pair integrated error[J]. Journal of Mechanical Engineering, 2010, 46(17): 55-61. (in Chinese) doi: 10.3901/JME.2010.17.055
    [16] 秦树人,高大启,何玮. 高速小型传动链动态精度测量系统的研究[J]. 重庆大学学报(自然科学版),1994,17(4): 1-5. QIN Shuren,GAO Daqi,HE Wei. The high speed and miniature system for measuring dynamic accuracy of drive chain[J]. Journal of Chongqing University,1994,17(4): 1-5. (in Chinese

    QIN Shuren, GAO Daqi, HE Wei. The high speed and miniature system for measuring dynamic accuracy of drive chain[J]. Journal of Chongqing University, 1994, 17(4): 1-5. (in Chinese)
    [17] 彭东林,张光辉,郭松涛,等. 全微机化传动误差检测分析系统的研制[J]. 重庆大学学报(自然科学版),1993,16(6): 70-74. PENG Donglin,ZHANG Guanghui,GUO Songtao,et al. Full microcomputerized testing and analysing system for transmission error[J]. Journal of Chongqing University (Natural Science Edition),1993,16(6): 70-74. (in Chinese

    PENG Donglin, ZHANG Guanghui, GUO Songtao, et al. Full microcomputerized testing and analysing system for transmission error[J]. Journal of Chongqing University (Natural Science Edition), 1993, 16(6): 70-74. (in Chinese)
    [18] 彭东林,郑永,陈自然,等. 基于误差传递理论及误差修正技术的高精度蜗轮母机研制[J]. 机械工程学报,2011,47(9): 157-163. PENG Donglin,ZHENG Yong,CHEN Ziran,et al. Research of high-precision worm gear machine tool based on error transmission theory and error correction technique[J]. Journal of Mechanical Engineering,2011,47(9): 157-163. (in Chinese doi: 10.3901/JME.2011.09.157

    PENG Donglin, ZHENG Yong, CHEN Ziran, et al. Research of high-precision worm gear machine tool based on error transmission theory and error correction technique[J]. Journal of Mechanical Engineering, 2011, 47(9): 157-163. (in Chinese) doi: 10.3901/JME.2011.09.157
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  80
  • HTML浏览量:  32
  • PDF量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 网络出版日期:  2024-04-25

目录

    /

    返回文章
    返回