Effect of endwall SJA on the corner separation of compressor cascade
-
摘要:
针对某型轴流压气机叶栅角区存在流动分离的问题,利用扫频射流激励器(SJA)主动流动控制技术,采用非定常数值计算方法对端壁SJA控制压气机平面叶栅角区分离的影响机理进行研究,分析和讨论了SJA位置布置、射流压比设定、射流偏角设定的影响规律和流场特性。研究结果表明:端壁SJA主要影响端壁和叶片表面附面层的发展和迁移,通过抑制集中脱落涡的生成与发展,以达到抑制角区分离、减小角区流动损失的目的;当SJA布置在轴向位置
$ {x}_{\mathrm{S}\mathrm{J}\mathrm{A}} $ /b =85%处、靠近吸力面时,降低流动损失的效果最佳;当SJA射流压比大约为1.01时,利用仅占主流0.03%的射流流量就可使得总压损失系数减小13.4%。此外,通过合理设计SJA射流偏角可有效改善端壁SJA存在的“扫掠盲点”问题,使得SJA控制效果得到进一步提高。Abstract:To address the issue of flow separation in the corner region of an axial flow compressor, an active flow control technique called sweeping jet actuator (SJA) was employed. Unsteady numerical simulations were conducted to investigate the impact of endwall SJA jets on mitigating flow separation in the compressor’s corner region. The effects of SJA placement, jet pressure ratio, jet skew angle, and their influence on flow characteristics were analyzed and discussed. The results indicated that the endwall SJA jets primarily affected the development and migration of the boundary layer on the endwall and blade surfaces. By suppressing the generation and development of concentrated shedding vortices, the corner separation was suppressed and the flow loss in the corner was reduced. Moreover, the optimal configuration for loss reduction was achieved when the SJA was positioned at approximately
$ {x}_{\mathrm{S}\mathrm{J}\mathrm{A}}/b $ =85% along the axial direction and close to the suction surface. When the jet pressure ratio for the SJA was approximately 1.01, with the help of only 0.03% of the mainstream flow for the jet flow, a relative reduction of 13.4% in total pressure loss coefficient can be achieved. Furthermore, by appropriately designing the jet skew angle, the issue of “sweeping blind spots” in the endwall SJA can be effectively mitigated, leading to further enhancement of the SJA controlling effectiveness. -
表 1 叶栅几何气动参数
Table 1. Geometric and aerodynamic parameters of the compressor cascade
参数 数值 轴向弦长 b/mm 117.3 弦长 c/mm 120 叶片高度 H/mm 160 节距 t/mm 74 几何进气角 β1/(°) 32.123 几何出气角 β2/(°) 7.877 折转角 Δβ/(°) 40 安装角 γ/(°) 12 来流马赫数 Ma 0.21 表 2 SJA主要几何参数
Table 2. Main geometric parameters of the SJA
参数 数值 宽度 W/mm 13.6 长度 L/mm 16 高度 HSJA/mm 1 出口喉部宽度 w/mm 2 -
[1] MENG Qinghe,CHEN Shaowen,LI Weihang,et al. Numerical investigation of a sweeping jet actuator for active flow control in a compressor cascade[R]. ASME Paper GT2018-76052,2018. [2] OTTO C,TEWES P,LITTLE J C,et al. Comparison of fluidic oscillators and steady jets for separation control on a wall-mounted hump[R]. AIAA 2018-1281,2018. [3] OTTO C,TEWES P,LITTLE J C,et al. Comparison between fluidic oscillators and steady jets for separation control[J]. AIAA Journal,2019,57(12): 5220-5229. [4] OSTERMANN F,WOSZIDLO R,NAYERI C N,et al. Properties of a sweeping jet emitted from a fluidic oscillator[J]. Journal of Fluid Mechanics,2018,857: 216-238. [5] KOKLU M,OWENS L R. Flow separation control over a ramp using sweeping jet actuators[R]. AIAA 2014-2367,2014. [6] KOKLU M,PACK MELTON L G. Sweeping jet actuator in a quiescent environment[R]. AIAA 2013-2477,2013. [7] NICKOL C L,HALLER W J. Assessment of the performance potential of advanced subsonic transport concepts for NASA’s environmentally responsible aviation project[R]. AIAA 2016-1030,2016. [8] WHALEN E A,LACY D S,LIN J C,et al. Performance enhancement of a full-scale vertical tail model equipped with active flow control[R]. AIAA 2015-0784,2015. [9] 王忠. 单出口振荡射流在流动控制中的应用研究[D]. 南京: 南京航空航天大学,2016. WANG Zhong. Application researches of single-outlet oscillating jets in fluid flow control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2016. (in ChineseWANG Zhong. Application researches of single-outlet oscillating jets in fluid flow control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese) [10] 赵曈. 振荡射流器性能优化及应用[D]. 南京: 南京航空航天大学,2021. ZHAO Tong. Performance optimization and application of sweeping jet actuators[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2021. (in ChineseZHAO Tong. Performance optimization and application of sweeping jet actuators[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese) [11] TEWES P,TAUBERT L,WYGNANSKI I. On the use of sweeping jets to augment the lift of a lambda-wing[R]. AIAA 2010-4689,2010. [12] SEELE R,GRAFF E,GHARIB M,et al. Improving rudder effectiveness with sweeping jet actuators[R]. AIAA 2012-3244,2012. [13] SEELE R,GRAFF E,LIN J,et al. Performance enhancement of a vertical tail model with sweeping jet actuators[R]. AIAA 2013-0411,2013. [14] SEELE R,TEWES P,WOSZIDLO R,et al. Discrete sweeping jets as tools for improving the performance of the V-22[J]. Journal of Aircraft,2009,46(6): 2098-2106. [15] PACK MELTON L G. Active flow separation control on a NACA 0015 wing using fluidic actuators [R]. AIAA 2014-2364,2014. [16] CHOEPHEL T,CODER J,MAUGHMER M. Airfoil boundary-layer flow control using fluidic oscillators[R]. AIAA 2012-2655,2012. [17] 马志明. 基于流体振荡器的S形进气道畸变流动控制机理与方法研究[D]. 南京: 南京航空航天大学,2021. MA Zhiming. Flow control mechanism and method of fluidic oscillator on the distorted flow in S-shaped inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2021. (in ChineseMA Zhiming. Flow control mechanism and method of fluidic oscillator on the distorted flow in S-shaped inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese) [18] 孟腾,董金钟,吴西云. 流体振荡器在进气道流动控制中的应用研究[J]. 科学技术与工程,2016,16(32): 319-324,341. MENG Teng,DONG Jinzhong,WU Xiyun. Active flow control with fluidic in S-shaped inlet[J]. Science Technology and Engineering,2016,16(32): 319-324,341. (in ChineseMENG Teng, DONG Jinzhong, WU Xiyun. Active flow control with fluidic in S-shaped inlet[J]. Science Technology and Engineering, 2016, 16(32): 319-324, 341. (in Chinese) [19] 王士奇. 流体振荡器: 一种有前途的非稳态激励器[J]. 航空动力,2022(1): 18-21. WANG Shiqi. Fluidic oscillator: a promising unsteady actuator[J]. Aerospace Power,2022(1): 18-21. (in ChineseWANG Shiqi. Fluidic oscillator: a promising unsteady actuator[J]. Aerospace Power, 2022(1): 18-21. (in Chinese) [20] 孟庆鹤,李伟航,陈绍文,等. 扫频式射流对涡轮叶栅间隙泄漏流动影响的数值研究[J]. 推进技术,2020,41(6): 1250-1257. MENG Qinghe,LI Weihang,CHEN Shaowen,et al. Numerical study for effects of sweeping jets on tip clearance flow in a turbine cascade[J]. Journal of Propulsion Technology,2020,41(6): 1250-1257. (in ChineseMENG Qinghe, LI Weihang, CHEN Shaowen, et al. Numerical study for effects of sweeping jets on tip clearance flow in a turbine cascade[J]. Journal of Propulsion Technology, 2020, 41(6): 1250-1257. (in Chinese) [21] CHEN Shaowen,LI Weihang,YANG Pengcheng,et al. Aerodynamic performance and leakage flow in turbine cascades with sweeping jet actuators[J]. Journal of Turbomachinery,2023,145(6): 061015. [22] CHEN Shaowen,LI Weihang. Effects of combined sweeping jet actuator and winglet tip on aerodynamic performance in a turbine cascade[J]. Aerospace Science and Technology,2022,131: 107956. [23] 孟庆鹤. 非定常射流控制轴流压气机叶栅角区分离的机理研究[D]. 哈尔滨: 哈尔滨工业大学,2021. MENG Qinghe. Research on the flow control mechanism of unsteady blowing on axial compressor cascade corner separation[D]. Harbin: Harbin Institute of Technology,2021. (in ChineseMENG Qinghe. Research on the flow control mechanism of unsteady blowing on axial compressor cascade corner separation[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese) [24] 孟庆鹤,陈绍文,刘宏言,等. 扫频式射流对设计工况压气机叶栅流动分离影响的数值研究[J]. 推进技术,2020,41(3): 566-573. MENG Qinghe,CHEN Shaowen,LIU Hongyan,et al. Numerical study for effects of sweeping jets on separation in a compressor cascade at designed condition[J]. Journal of Propulsion Technology,2020,41(3): 566-573. (in ChineseMENG Qinghe, CHEN Shaowen, LIU Hongyan, et al. Numerical study for effects of sweeping jets on separation in a compressor cascade at designed condition[J]. Journal of Propulsion Technology, 2020, 41(3): 566-573. (in Chinese) [25] LU Weiyu,JIAO Yanmei,FU Xin. Concept of self-excited unsteady flow control on a compressor blade and its preliminary proof by numerical simulation[J]. Aerospace Science and Technology,2022,123: 107498.