留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部进气裂解油气向心涡轮气动设计与轴向力分析

王永杰 徐国强 于喜奎 董苯思

王永杰, 徐国强, 于喜奎, 等. 局部进气裂解油气向心涡轮气动设计与轴向力分析[J]. 航空动力学报, 2024, 39(3):20230624 doi: 10.13224/j.cnki.jasp.20230624
引用本文: 王永杰, 徐国强, 于喜奎, 等. 局部进气裂解油气向心涡轮气动设计与轴向力分析[J]. 航空动力学报, 2024, 39(3):20230624 doi: 10.13224/j.cnki.jasp.20230624
WANG Yongjie, XU Guoqiang, YU Xikui, et al. Aerodynamic design and axial force analysis of partial admission radial turbine with cracked fuel vapor[J]. Journal of Aerospace Power, 2024, 39(3):20230624 doi: 10.13224/j.cnki.jasp.20230624
Citation: WANG Yongjie, XU Guoqiang, YU Xikui, et al. Aerodynamic design and axial force analysis of partial admission radial turbine with cracked fuel vapor[J]. Journal of Aerospace Power, 2024, 39(3):20230624 doi: 10.13224/j.cnki.jasp.20230624

局部进气裂解油气向心涡轮气动设计与轴向力分析

doi: 10.13224/j.cnki.jasp.20230624
基金项目: 基础研究项目(2019-JCJQ-DA-001-152)
详细信息
    作者简介:

    王永杰(1990-),男,博士生,研究领域为微型动力装置气动设计

    通讯作者:

    于喜奎(1972-),男,研究员,硕士,研究领域为飞机机电系统综合技术。E-mail:wyj2020xq@buaa.edu.cn

  • 中图分类号: V19;TK14

Aerodynamic design and axial force analysis of partial admission radial turbine with cracked fuel vapor

  • 摘要:

    从涡轮结构形式的角度探究了油气涡轮轴向力平衡问题。建立了半开式、开式与闭式3种局部进气裂解油气向心涡轮,通过数值仿真对比分析了设计工况下3种油气涡轮的气动性能与轴向力,并归纳总结了非设计工况下总轴向力随压比的变化规律。仿真结果表明:半开式、开式与闭式油气涡轮的总体气动性能相近但轴向力表现有明显的差别。当涡轮压比发生变化时,开式油气涡轮轴向力稳定性最好,半开式油气涡轮轴向力稳定性最差,闭式油气涡轮轴向力始终是3种油气涡轮中最小的。由结果分析可知,当涡轮压比低于3时,应避免选用半开式油气涡轮,而涡轮压比变化较大时,则宜采用开式油气涡轮,此外,在采用闭式油气涡轮时需要轴承预留足够的轴向载荷裕度。

     

  • 图 1  裂解油气物性分析

    Figure 1.  Physical property analysis of cracked fuel vapor

    图 2  局部进气裂解油气向心涡轮结构图

    Figure 2.  Configuration of partial admission radial turbine with cracked fuel vapor

    图 3  网格无关解分析

    Figure 3.  Grid independent analysis

    图 4  3种油气涡轮压力云图与剖面流场

    Figure 4.  Pressure contour and profile flow field of three fuel vapor turbines

    图 5  轮盖间隙流场与压力分布

    Figure 5.  Flow field and pressure distribution of impeller cover clearance

    图 6  3种油气涡轮总轴向力随压比的变化曲线

    Figure 6.  Variation curves of total axial force with pressure ratio of three fuel vapor turbines

    图 7  导叶出口压力分布云图与导叶出口压力随压比的变化曲线

    Figure 7.  Pressure distribution of guide vane outlet and variation curves of guide vane outlet pressure with pressure ratio

    图 8  典型工况下油气涡轮转子压力分布

    Figure 8.  Rotor pressure distribution of fuel vapor turbines under typical working conditions

    图 9  典型工况下关键受力面平均压差

    Figure 9.  Average pressure difference of key surfaces under typical working conditions

    表  1  裂解油气工质的温度与压力

    Table  1.   Temperature and pressure of cracked fuel vapor

    裂解度/%压力/MPa温度/K
    06753
    17.86843
    39.36868
    62.26898
    806940
    下载: 导出CSV

    表  2  油气涡轮设计工况

    Table  2.   Design conditions of fuel vapor turbine

    参数数值
    入口压力/MPa6
    入口温度/K940
    出口压力/MPa3
    转速/(r/min)60000
    下载: 导出CSV

    表  3  3种油气涡轮的几何尺寸

    Table  3.   Geometric dimensions of three fuel vapor turbines

    参数 数值
    蜗壳入口半径/mm 12
    导叶入口半径/mm 47.8
    导叶出口半径/mm 42
    导叶喉口面积/mm2 9.3
    导叶通道数 5
    转子入口半径/mm 41.3
    转子入口叶高/mm 2.7
    转子叶顶间隙/mm 0.5
    转子出口叶尖半径/mm 22.9
    转子出口叶根半径/mm 14.3
    转子叶片数 14
    开式涡轮盘缘半径/mm 33.6
    闭式涡轮轮盖间隙/mm 0.5
    轮盖篦齿数 5
    下载: 导出CSV

    表  4  3种油气涡轮关键气动参数对比

    Table  4.   Comparison of key aerodynamic parameters of three fuel vapor turbines

    参数 半开式涡轮 开式涡轮 闭式涡轮
    数值 数值 偏差/% 数值 偏差/%
    质量流量/(kg/s) 0.505 0.502 −0.594 0.503 −0.396
    功率/kW 39.749 39.473 −0.694 41.113 3.433
    等熵效率/% 69.098 69.029 −0.100 71.755 3.844
    转子入口压力/kPa 395.025 405.273 2.594 394.718 −0.078
    转子入口绝对速度/(m/s) 333.664 327.868 −1.737 338.078 1.323
    转子入口绝对气流角/(°) 15.931 16.057 0.788 15.826 −0.657
    转子入口相对速度/(m/s) 108.519 104.755 −3.469 111.459 2.709
    转子入口相对气流角/(°) 57.560 59.960 4.170 55.815 −3.031
    转子出口绝对速度/(m/s) 96.478 93.388 −3.203 86.744 −0.101
    转子出口绝对气流角/(°) 73.101 76.679 4.895 88.799 0.215
    转子出口相对气流角/(°) 134.298 136.751 1.826 143.289 0.067
    下载: 导出CSV

    表  5  3种油气涡轮各受力面轴向力对比

    Table  5.   Comparison of axial force on each surface of three fuel vapor turbines

    受力面 轴向力/N
    半开式 开式 闭式
    前盘−1375.2−1374.3−1378
    叶片−2089.3−2089.4−550.2
    轮毂−13895.8−8155.3−13872.3
    背盘18649.712443.218588.9
    轮盖内侧11174.2
    轮盖外侧−13428
    总计1289.4824.2534.6
    下载: 导出CSV
  • [1] CURRAN E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power,2001,17(6): 1138-1148. doi: 10.2514/2.5875
    [2] FIDAN B,MIRMIRANI M,IOANNOU P. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions[R]. AIAA2003-7081,2003.
    [3] 蔡国飙,徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社,2012.
    [4] 焦子涵,邓帆,范宇,等. 吸气式高超声速飞行器前体/进气道一体化设计与试验[J]. 航空动力学报,2017,32(1): 168-176. JIAO Zihan,DENG Fan,FAN Yu,et al. Integrated design and test of forebody/inlet for air-breathing hypersonic vehicle[J]. Journal of Aerospace Power,2017,32(1): 168-176. (in Chinese doi: 10.13224/j.cnki.jasp.2017.01.023

    JIAO Zihan, DENG Fan, FAN Yu, et al. Integrated design and test of forebody/inlet for air-breathing hypersonic vehicle[J]. Journal of Aerospace Power, 2017, 32(1): 168-176. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.01.023
    [5] SFORZA P. Electric power generation onboard hypersonic aircraft[R]. AIAA2009-5119,2009.
    [6] MADONNA V,GIANGRANDE P,GALEA M. Electrical power generation in aircraft: review,challenges,and opportunities[J]. IEEE Transactions on Transportation Electrification,2018,4(3): 646-659. doi: 10.1109/TTE.2018.2834142
    [7] 张铎. 碳氢燃料超燃冲压发动机油气涡轮发电系统研究[D]. 哈尔滨: 哈尔滨工业大学,2016. ZHANG Duo. Investigation of power generation system driven by fuel vapor turbine on a hydrocarbon scramjet[D]. Harbin: Harbin Institute of Technology,2016. (in Chinese

    ZHANG Duo. Investigation of power generation system driven by fuel vapor turbine on a hydrocarbon scramjet[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [8] BAO Wen,ZHANG Duo,QIN Jiang,et al. Performance analysis on fuel turbo-pump and motor system of scramjet engine[R]. AIAA2012-4159,2012.
    [9] 李鹏. 有机朗肯循环与向心透平性能优化及实验研究[D]. 北京: 华北电力大学,2020. LI Peng. Performance optimization and experimental study of organic Rankine cycle and radial inflow turbine[D]. Beijing: North China Electric Power University,2020. (in Chinese

    LI Peng. Performance optimization and experimental study of organic Rankine cycle and radial inflow turbine[D]. Beijing: North China Electric Power University, 2020. (in Chinese)
    [10] FIASCHI D,INNOCENTI G,MANFRIDA G,et al. Design of micro radial turboexpanders for ORC power cycles: from 0D to 3D[J]. Applied Thermal Engineering,2016,99: 402-410. doi: 10.1016/j.applthermaleng.2015.11.087
    [11] RAHBAR K,MAHMOUD S,AL-DADAH R K,et al. One-dimensional and three-dimensional numerical optimization and comparison of single-stage supersonic and dual-stage transonic radial inflow turbines for the ORC[R]. Charlotte,US: ASME 2016 Power Conference,2016.
    [12] BOZZI L,MALAVASI F,GAROTTA V. Heavy-duty gas turbines axial thrust calculation in different operating conditions[R]. Vancouver,Canada: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition,2011.
    [13] TIAINEN J,JAATINEN-VÄRRI A,GRÖNMAN A,et al. Validation of the axial thrust estimation method for radial turbomachines[J]. International Journal of Rotating Machinery,2021,2021: 1-18.
    [14] HUO Changjiang,SUN Jinju,SONG Peng,et al. Investigating the influence of impeller axial thrust balance holes on the flow and overall performance of a cryogenic liquid turbine expander[J]. Journal of Engineering for Gas Turbines and Power,2021,143(10): 101014. doi: 10.1115/1.4051501
    [15] 何嘉伟,王强,李书奇,等. 涡轮增压器转子涡轮级气动轴向力数值计算[J]. 机械设计与制造,2019(4): 196-199,203. HE Jiawei,WANG Qiang,LI Shuqi,et al. Numerical calculation of aerodynamic axial force of turbine rotor[J]. Machinery Design & Manufacture,2019(4): 196-199,203. (in Chinese doi: 10.3969/j.issn.1001-3997.2019.04.049

    HE Jiawei, WANG Qiang, LI Shuqi, et al. Numerical calculation of aerodynamic axial force of turbine rotor[J]. Machinery Design & Manufacture, 2019(4): 196-199, 203. (in Chinese) doi: 10.3969/j.issn.1001-3997.2019.04.049
    [16] 蔡毅,朱惠人,张丽,等. 影响某型燃机转子轴向力关键因素分析[J]. 航空工程进展,2013,4(1): 66-70. CAI Yi,ZHU Huiren,ZHANG Li,et al. Key factors investigation on the rotors axial thrust of a gas turbine[J]. Advances in Aeronautical Science and Engineering,2013,4(1): 66-70. (in Chinese doi: 10.16615/j.cnki.1674-8190.2013.01.023

    CAI Yi, ZHU Huiren, ZHANG Li, et al. Key factors investigation on the rotors axial thrust of a gas turbine[J]. Advances in Aeronautical Science and Engineering, 2013, 4(1): 66-70. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2013.01.023
    [17] 邵冬,孙志刚,谭春青,等. 闭式叶轮轮盖空腔流场的数值研究[J]. 推进技术,2017,38(6): 1241-1248. SHAO Dong,SUN Zhigang,TAN Chunqing,et al. Numerical investigation on flow field of impeller front-side cavity for shrouded impeller[J]. Journal of Propulsion Technology,2017,38(6): 1241-1248. (in Chinese doi: 10.13675/j.cnki.tjjs.2017.06.006

    SHAO Dong, SUN Zhigang, TAN Chunqing, et al. Numerical investigation on flow field of impeller front-side cavity for shrouded impeller[J]. Journal of Propulsion Technology, 2017, 38(6): 1241-1248. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.06.006
    [18] ZHOU Weixing,JIA Zhenjian,QIN Jiang,et al. Experimental study on effect of pressure on heat sink of n-decane[J]. Chemical Engineering Journal,2014,243: 127-136. doi: 10.1016/j.cej.2013.12.081
    [19] WARD T A,ERVIN J S,STRIEBICH R C,et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of Propulsion and Power,2004,20(3): 394-402. doi: 10.2514/1.10380
    [20] 禹进,龚相奎,张俊良. RP-3航空煤油模型燃料及其骨架机理构建新方法研究[J/OL]. 航空动力学报,[2023-12-18]. https://kns-cnki-net-s.vpn.buaa.edu.cn: 8118/kcms2/article/abstract?v=p7sfyaWOx3N_k6ItXtI5H0iEMysAGi1TCDwtrtDz3vQ9dwOQ9yn_xhOZpAUpY2hIj77zzCEk3ids0Ikal8IamEt2C-LNoRnIPY52T7JNkqmq996ILhXLaS71cWOMPOESH2hjPSa9WvU=&uniplatform=NZKPT&language=CHS. YU Jin,GONG Xiangkui,ZHANG Junliang. Study on a surrogate fuel model and a now methodology for developing skeletal mechanism for RP-3 aviation kerosene [J/OL]. Journal of Aerospace Power,[2023-12-18]. https://kns-cnki-net-s.vpn.buaa.edu.cn:8118/kcms2/article/abstract?v=p7sfyaWOx3N_k6ItXtI5H0iEMysAGi1TCDwtrtDz3vQ9dwOQ9yn_xhOZpAUpY2hIj77zzCEk3ids0Ikal8IamEt2C-LNoRnIPY52T7JNkqmq996ILhXLaS71cWOMPOESH2hjPSa9WvU=&uniplatform=NZKPT&language=CHS. (in Chinese

    YU Jin, GONG Xiangkui, ZHANG Junliang. Study on a surrogate fuel model and a now methodology for developing skeletal mechanism for RP-3 aviation kerosene [J/OL]. Journal of Aerospace Power, [2023-12-18]. https://kns-cnki-net-s.vpn.buaa.edu.cn:8118/kcms2/article/abstract?v=p7sfyaWOx3N_k6ItXtI5H0iEMysAGi1TCDwtrtDz3vQ9dwOQ9yn_xhOZpAUpY2hIj77zzCEk3ids0Ikal8IamEt2C-LNoRnIPY52T7JNkqmq996ILhXLaS71cWOMPOESH2hjPSa9WvU=&uniplatform=NZKPT&language=CHS. (in Chinese)
    [21] LI Haowei,QIN Jiang,JIANG Yuguang,et al. Experimental study on the thermodynamic characteristics of the high temperature hydrocarbon fuel in the cooling channel of the hypersonic vehicle[J]. Acta Astronautica,2019,155: 63-79. doi: 10.1016/j.actaastro.2018.11.021
    [22] WANG Hanwei,LUO Kai,HUANG Chuang,et al. Numerical investigation of partial admission losses in radial inflow turbines[J]. Energy,2022,239: 121870. doi: 10.1016/j.energy.2021.121870
    [23] WANG Hanwei,CHAO Yue,TANG Tian,et al. A comparison of partial admission axial and radial inflow turbines for underwater vehicles[J]. Energies,2021,14(5): 1514. doi: 10.3390/en14051514
    [24] 孙冠珂,李文,张雪辉,等. 向心涡轮进气结构的气动性能及损失机理[J]. 航空动力学报,2015,30(8): 1926-1935. SUN Guanke,LI Wen,ZHANG Xuehui,et al. Aerodynamic performance and losses mechanism of radial turbine intake components[J]. Journal of Aerospace Power,2015,30(8): 1926-1935. (in Chinese doi: 10.13224/j.cnki.jasp.2015.08.016

    SUN Guanke, LI Wen, ZHANG Xuehui, et al. Aerodynamic performance and losses mechanism of radial turbine intake components[J]. Journal of Aerospace Power, 2015, 30(8): 1926-1935. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.08.016
    [25] 冯涛,周颖,邹正平,等. 向心涡轮内部流动数值模拟分析[J]. 航空动力学报,2006,21(3): 448-454. FENG Tao,ZHOU Ying,ZOU Zhengping,et al. Numerical simulation of the flow inside radial inflow turbine[J]. Journal of Aerospace Power,2006,21(3): 448-454. (in Chinese doi: 10.13224/j.cnki.jasp.2006.03.003

    FENG Tao, ZHOU Ying, ZOU Zhengping, et al. Numerical simulation of the flow inside radial inflow turbine[J]. Journal of Aerospace Power, 2006, 21(3): 448-454. (in Chinese) doi: 10.13224/j.cnki.jasp.2006.03.003
    [26] 欧阳玉清,李维,曾飞,等. 向心涡轮跨声速导向叶片叶型设计及验证[J]. 航空动力学报,2023,38(5): 1217-1225. OUYANG Yuqing,LI Wei,ZENG Fei,et al. Design and validation of transonic nozzle guide vane profile of radial-inflow turbine[J]. Journal of Aerospace Power,2023,38(5): 1217-1225. (in Chinese doi: 10.13224/j.cnki.jasp.20220820

    OUYANG Yuqing, LI Wei, ZENG Fei, et al. Design and validation of transonic nozzle guide vane profile of radial-inflow turbine[J]. Journal of Aerospace Power, 2023, 38(5): 1217-1225. (in Chinese) doi: 10.13224/j.cnki.jasp.20220820
    [27] MENTER F,KUNTZ M,LANGTRY R. Ten years of industrial experience with the SST turbulence mode[J]. Heat and Mass Transfer,2003,4: 625-632.
    [28] BONCINELLI P,RUBECHINI F,ARNONE A,et al. Real gas effects in turbomachinery flows: a computational fluid dynamics model for fast computations[J]. Journal of Turbomachinery,2004,126(2): 268-276. doi: 10.1115/1.1738121
    [29] WAKEHAM W A. Transport properties of fluids: their correlation,prediction and estimation[M]. Cambridge,US: Cambridge University Press,1996.
    [30] 张程,夏智勋,马超,等. 基于 k- ω SST模型的同心筒发射装置流场数值模拟[J]. 航空动力学报,2019,34(11): 2331-2338. ZHANG Cheng,XIA Zhixun,MA Chao,et al. Numerical simulation of flow field of concentric canister launcher based on k- ω SST turbulence model[J]. Journal of Aerospace Power,2019,34(11): 2331-2338. (in Chinese

    ZHANG Cheng, XIA Zhixun, MA Chao, et al. Numerical simulation of flow field of concentric canister launcher based on k-ω SST turbulence model[J]. Journal of Aerospace Power, 2019, 34(11): 2331-2338. (in Chinese)
    [31] DONG Bensi,XU Guoqiang,LUO Xiang,et al. Analysis of the supercritical organic Rankine cycle and the radial turbine design for high temperature applications[J]. Applied Thermal Engineering,2017,123: 1523-1530. doi: 10.1016/j.applthermaleng.2016.12.123
    [32] 孙大伟,乔渭阳,许开富,等. 不同攻角对涡轮叶栅损失的影响[J]. 航空动力学报,2008,23(7): 1232-1239. SUN Dawei,QIAO Weiyang,XU Kaifu,et al. Influence of different incidences on loss in turbine cascade[J]. Journal of Aerospace Power,2008,23(7): 1232-1239. (in Chinese doi: 10.13224/j.cnki.jasp.2008.07.026

    SUN Dawei, QIAO Weiyang, XU Kaifu, et al. Influence of different incidences on loss in turbine cascade[J]. Journal of Aerospace Power, 2008, 23(7): 1232-1239. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.07.026
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  82
  • HTML浏览量:  34
  • PDF量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-02
  • 网络出版日期:  2023-12-20

目录

    /

    返回文章
    返回