Influences of the hub lobes on combustion instabilities in a coaxial staged combustor
-
摘要:
针对同轴分级燃烧室,研究了分别向塔式旋流器的主燃1级和主燃2级轮毂添加波瓣结构时的燃烧不稳定性。通过冷态实验对比了不同燃烧室结构下冷态流场之间的差异,再应用大涡模拟方法获得了燃烧室全局释热率脉动频谱以及一个脉动周期内的涡量和释热率等参数云图的变化,借助动力学模态分解分析了不同燃烧室结构下的速度和释热率等模态。向主燃1级轮毂添加波瓣能够降低强漩涡出现的频率,释热率脉动幅值为全局平均释热率的4%,相比原型燃烧室下降了约45%,其释热率模态表现为高频小振幅。而向主燃2级添加波瓣则导致最大涡强度升高,主频为471 Hz的释热率脉动幅值达到了全局平均释热率的30%以上,还出现了周期性回火,不利于燃烧室稳定运行。
Abstract:In response to the combustion instability of a coaxial staged combustor, the addition of lobe to the first and second main stage combustion hubs of a tower swirlers was studied. The differences in cold velocity field of combustors under different structures were compared through experimental results. The large eddy simulation method was applied to obtain the global heat release rate fluctuation spectrum of the combustor, as well as the vorticity and heat release rate within a pulsation period. Finally, the velocity and heat release rates of different combustors were analyzed using dynamic mode decomposition. Adding lobes to the first main stage hub could reduce the frequency of strong vortices, and the pulsation amplitude of the heat release rate was 4% of the global average heat release rate, about 45% lower than the prototype combustor. The heat release rate mode exhibited high-frequency small amplitude. Adding lobes to the second main stage led to an increase in the maximum vortex intensity. The pulsation amplitude of the heat release rate with a main frequency of 471 Hz reached more than 30% of the global average heat release rate, and periodic flashbacks occurred, which was not conducive to the stable operation of the combustion chamber.
-
Key words:
- combustor /
- coaxial staged /
- combustion instabilities /
- large eddy simulation /
- lobes
-
-
[1] 中国民用航空局. 涡轮发动机飞机燃油排泄和排气排出物规定[R]. 北京: 中国民用航空局,2002. Civil Aviation Administration of China. Regulations for fuel discharge and exhaust emissions of turbo engine aircraft[R]. Beijing: Civil Aviation Administration of China,2002. (in ChineseCivil Aviation Administration of China. Regulations for fuel discharge and exhaust emissions of turbo engine aircraft[R]. Beijing: Civil Aviation Administration of China, 2002. (in Chinese) [2] Environmental Protection Agency. Aircraft: exhaust emission standards[R]. Washington: Environmental Protection Agency,2016. [3] DUNN-RANKIN D,THERKELSEN P. Lean combustion: technology and control[M]. London: Academic Press,2016. [4] LIEUWEN T,MCMANUS K. Introduction: combustion dynamics in lean-premixed prevaporized (LPP) gas turbines[J]. Journal of Propulsion and Power,2003,19(5): 721. doi: 10.2514/2.6171 [5] 李磊,孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术,2010,31(6): 710-720. LI Lei,SUN Xiaofeng. Mechanism,prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology,2010,31(6): 710-720. (in ChineseLI Lei, SUN Xiaofeng. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6): 710-720. (in Chinese) [6] LIEUWEN T C,YANG V. Combustion instabilities in gas turbine engines: operational experience,fundamental mechanisms and modeling[M]. Reston,US: American Institute of Aeronautics and Astronautics,2005. [7] LIEUWEN T C. Unsteady combustor physics[M]. Cambridge: Cambridge University Press,2021. [8] LV Guangpu,LIU Xiao,ZHANG Zhihao,et al. The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: a large eddy simulation study[J]. Energy,2023,274: 127246. doi: 10.1016/j.energy.2023.127246 [9] 宋恒,林宇震,韩啸,等. 出口收缩对分层旋流火焰和热声振荡的影响[J]. 工程热物理学报,2020,41(9): 2279-2284. SONG Heng,LIN Yuzhen,HAN Xiao,et al. Effects of the outlet contraction on stratified swirl flames and thermoacoustic oscillations[J]. Journal of Engineering Thermophysics,2020,41(9): 2279-2284. (in ChineseSONG Heng, LIN Yuzhen, HAN Xiao, et al. Effects of the outlet contraction on stratified swirl flames and thermoacoustic oscillations[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2279-2284. (in Chinese) [10] 韩啸,宋恒,张弛,等. 燃烧室燃烧不稳定性的被动控制[C]// 第十一届全国流体力学学术会议论文摘要集. 深圳: 中国力学学会,2020: 396. [11] 宋恒,刘玉治,王欣尧,等. 限制域形状对分层火焰和燃烧不稳定性的影响[J]. 推进技术,2022,43(8): 220-229. SONG Heng,LIU Yuzhi,WANG Xinyao,et al. Effects of confinement shapes on stratified flames and combustion instabilities[J]. Journal of Propulsion Technology,2022,43(8): 220-229. (in ChineseSONG Heng, LIU Yuzhi, WANG Xinyao, et al. Effects of confinement shapes on stratified flames and combustion instabilities[J]. Journal of Propulsion Technology, 2022, 43(8): 220-229. (in Chinese) [12] BLAETTE L,BOETTCHER A,STREB H. Combustion system upgrades for high operation flexibility and low emission: design,testing and validation of the SGT5-4000F[R]. Virtual: ASME,2020. [13] 王思睿,刘训臣,李磊,等. 分层比对分层旋流火焰稳定模式及流动结构的影响[J]. 空气动力学学报,2020,38(3): 619-628. WANG Sirui,LIU Xunchen,LI Lei,et al. Effects of stratification ratio on flame stabilization and flow structure in stratified swirling flame[J]. Acta Aerodynamica Sinica,2020,38(3): 619-628. (in ChineseWANG Sirui, LIU Xunchen, LI Lei, et al. Effects of stratification ratio on flame stabilization and flow structure in stratified swirling flame[J]. Acta Aerodynamica Sinica, 2020, 38(3): 619-628. (in Chinese) [14] 张弛,周宇晨,韩啸,等. 同心旋流分层预混火焰的动力学模态分析[J]. 推进技术,2020,41(3): 595-604. ZHANG Chi,ZHOU Yuchen,HAN Xiao,et al. Dynamic mode analysis on internally-staged-swirling stratified premixed flame[J]. Journal of Propulsion Technology,2020,41(3): 595-604. (in ChineseZHANG Chi, ZHOU Yuchen, HAN Xiao, et al. Dynamic mode analysis on internally-staged-swirling stratified premixed flame[J]. Journal of Propulsion Technology, 2020, 41(3): 595-604. (in Chinese) [15] 魏为,许全宏,苏童,等. 不同气量分配下声激励对中心分级旋流火焰动力学的影响[J]. 航空动力学报,2022,37(8): 1607-1619. WEI Wei,XU Quanhong,SU Tong,et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power,2022,37(8): 1607-1619. (in ChineseWEI Wei, XU Quanhong, SU Tong, et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power, 2022, 37(8): 1607-1619. (in Chinese) [16] GUYOT D,TEA G,APPEL C. Low NOx lean premix reheat combustion in alstom GT24 gas turbines[J]. Journal of Engineering for Gas Turbines and Power,2016,138(5): 051503. doi: 10.1115/1.4031543 [17] TSCHUOR R,FRUECHTEL G,DE JONGE J,et al. Mechanical design and manufacturing of improved GT24 SEV burner[R]. Montréal: ASME,2015. [18] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press,2000. [19] SHUR M L,SPALART P R,STRELETS M K,et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow,2008,29(6): 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001 [20] 杨金虎. FGM预混及部分预混湍流燃烧模型研究与应用[D]. 北京: 中国科学院研究生院(工程热物理研究所),2012. YANG Jinhu. FGM based premixed and partially premixed turbulent combustion model—research and application[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences,2012. (in ChineseYANG Jinhu. FGM based premixed and partially premixed turbulent combustion model—research and application[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012. (in Chinese) -