留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮毂波瓣对同轴分级燃烧室燃烧不稳定性的影响

郑维新 张志浩 吕光普 刘潇

郑维新, 张志浩, 吕光普, 等. 轮毂波瓣对同轴分级燃烧室燃烧不稳定性的影响[J]. 航空动力学报, 2024, 39(9):20230668 doi: 10.13224/j.cnki.jasp.20230668
引用本文: 郑维新, 张志浩, 吕光普, 等. 轮毂波瓣对同轴分级燃烧室燃烧不稳定性的影响[J]. 航空动力学报, 2024, 39(9):20230668 doi: 10.13224/j.cnki.jasp.20230668
ZHENG Weixin, ZHANG Zhihao, LYU Guangpu, et al. Influences of the hub lobes on combustion instabilities in a coaxial staged combustor[J]. Journal of Aerospace Power, 2024, 39(9):20230668 doi: 10.13224/j.cnki.jasp.20230668
Citation: ZHENG Weixin, ZHANG Zhihao, LYU Guangpu, et al. Influences of the hub lobes on combustion instabilities in a coaxial staged combustor[J]. Journal of Aerospace Power, 2024, 39(9):20230668 doi: 10.13224/j.cnki.jasp.20230668

轮毂波瓣对同轴分级燃烧室燃烧不稳定性的影响

doi: 10.13224/j.cnki.jasp.20230668
基金项目: 国家自然科学基金(52206137)
详细信息
    作者简介:

    郑维新(1976-),男,高级工程师,主要从事燃气轮机/航空发动机设计研究。E-mail:zhengweixin1976@163.com

    通讯作者:

    刘潇(1988-),男,副教授,博士,主要从事燃气轮机低排放燃烧组织方法研究。E-mail:liuxiao_heu@163.com

  • 中图分类号: V231;TK16

Influences of the hub lobes on combustion instabilities in a coaxial staged combustor

  • 摘要:

    针对同轴分级燃烧室,研究了分别向塔式旋流器的主燃1级和主燃2级轮毂添加波瓣结构时的燃烧不稳定性。通过冷态实验对比了不同燃烧室结构下冷态流场之间的差异,再应用大涡模拟方法获得了燃烧室全局释热率脉动频谱以及一个脉动周期内的涡量和释热率等参数云图的变化,借助动力学模态分解分析了不同燃烧室结构下的速度和释热率等模态。向主燃1级轮毂添加波瓣能够降低强漩涡出现的频率,释热率脉动幅值为全局平均释热率的4%,相比原型燃烧室下降了约45%,其释热率模态表现为高频小振幅。而向主燃2级添加波瓣则导致最大涡强度升高,主频为471 Hz的释热率脉动幅值达到了全局平均释热率的30%以上,还出现了周期性回火,不利于燃烧室稳定运行。

     

  • 图 1  同轴分级模型燃烧室几何结构示意图

    Figure 1.  Geometric structure of the coaxial staged model combustor

    图 2  三级塔式旋流器轮毂波瓣结构示意图

    Figure 2.  Hub lobe structure of a three-stage tower swirler

    图 3  实验台供气系统及测量系统示意图

    Figure 3.  Gas supply system and measurement system for the experimental platform

    图 4  不同结构燃烧室时均速度及矢量场

    Figure 4.  Time averaged velocity and vector field with different structures

    图 5  不同结构燃烧室时均速度分布

    Figure 5.  Time-averaged velocity distribution in different combustors

    图 6  不同结构燃烧室瞬时流场结构

    Figure 6.  Instantaneous flow field structure in different combustors

    图 7  不同燃烧室结构瞬时涡量分布包络线

    Figure 7.  Envelope lines of instantaneous vorticity distribution in different combustors

    图 8  实验与数值模拟不同轴向位置处轴向速度的对比

    Figure 8.  Axial velocity of experimental and numerical simulations at different axial positions

    图 9  不同结构燃烧室释热率脉动频谱

    Figure 9.  Fluctuation spectrum of heat release rate in combustors with different structures

    图 10  不同燃烧室结构下一个周期内的涡量云图分布

    Figure 10.  Vorticity contours in one period for different combustors

    图 11  不同燃烧室结构下一个周期内的混合分数云图分布

    Figure 11.  Mixture fraction contours in one period for different combustors

    图 12  不同燃烧室结构下一个周期内的温度云图分布

    Figure 12.  Temperature contours in one period for different combustors

    图 13  不同燃烧室结构下一个周期内的释热率云图分布

    Figure 13.  Heat release rate contours in one period for different combustors

    图 14  不同燃烧室结构下速度脉动的前4阶空间模态

    Figure 14.  The first four spatial modes of velocity pulsation for different combustors

    图 15  不同燃烧室结构下温度脉动的前4阶空间模态

    Figure 15.  The first four spatial modes of temperature pulsation for different combustors

    图 16  不同燃烧室结构下释热率脉动的前4阶空间模态

    Figure 16.  The first four spatial modes of heat release rate pulsation for different combustors

  • [1] 中国民用航空局. 涡轮发动机飞机燃油排泄和排气排出物规定[R]. 北京: 中国民用航空局,2002. Civil Aviation Administration of China. Regulations for fuel discharge and exhaust emissions of turbo engine aircraft[R]. Beijing: Civil Aviation Administration of China,2002. (in Chinese

    Civil Aviation Administration of China. Regulations for fuel discharge and exhaust emissions of turbo engine aircraft[R]. Beijing: Civil Aviation Administration of China, 2002. (in Chinese)
    [2] Environmental Protection Agency. Aircraft: exhaust emission standards[R]. Washington: Environmental Protection Agency,2016.
    [3] DUNN-RANKIN D,THERKELSEN P. Lean combustion: technology and control[M]. London: Academic Press,2016.
    [4] LIEUWEN T,MCMANUS K. Introduction: combustion dynamics in lean-premixed prevaporized (LPP) gas turbines[J]. Journal of Propulsion and Power,2003,19(5): 721. doi: 10.2514/2.6171
    [5] 李磊,孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术,2010,31(6): 710-720. LI Lei,SUN Xiaofeng. Mechanism,prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology,2010,31(6): 710-720. (in Chinese

    LI Lei, SUN Xiaofeng. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6): 710-720. (in Chinese)
    [6] LIEUWEN T C,YANG V. Combustion instabilities in gas turbine engines: operational experience,fundamental mechanisms and modeling[M]. Reston,US: American Institute of Aeronautics and Astronautics,2005.
    [7] LIEUWEN T C. Unsteady combustor physics[M]. Cambridge: Cambridge University Press,2021.
    [8] LV Guangpu,LIU Xiao,ZHANG Zhihao,et al. The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: a large eddy simulation study[J]. Energy,2023,274: 127246. doi: 10.1016/j.energy.2023.127246
    [9] 宋恒,林宇震,韩啸,等. 出口收缩对分层旋流火焰和热声振荡的影响[J]. 工程热物理学报,2020,41(9): 2279-2284. SONG Heng,LIN Yuzhen,HAN Xiao,et al. Effects of the outlet contraction on stratified swirl flames and thermoacoustic oscillations[J]. Journal of Engineering Thermophysics,2020,41(9): 2279-2284. (in Chinese

    SONG Heng, LIN Yuzhen, HAN Xiao, et al. Effects of the outlet contraction on stratified swirl flames and thermoacoustic oscillations[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2279-2284. (in Chinese)
    [10] 韩啸,宋恒,张弛,等. 燃烧室燃烧不稳定性的被动控制[C]// 第十一届全国流体力学学术会议论文摘要集. 深圳: 中国力学学会,2020: 396.
    [11] 宋恒,刘玉治,王欣尧,等. 限制域形状对分层火焰和燃烧不稳定性的影响[J]. 推进技术,2022,43(8): 220-229. SONG Heng,LIU Yuzhi,WANG Xinyao,et al. Effects of confinement shapes on stratified flames and combustion instabilities[J]. Journal of Propulsion Technology,2022,43(8): 220-229. (in Chinese

    SONG Heng, LIU Yuzhi, WANG Xinyao, et al. Effects of confinement shapes on stratified flames and combustion instabilities[J]. Journal of Propulsion Technology, 2022, 43(8): 220-229. (in Chinese)
    [12] BLAETTE L,BOETTCHER A,STREB H. Combustion system upgrades for high operation flexibility and low emission: design,testing and validation of the SGT5-4000F[R]. Virtual: ASME,2020.
    [13] 王思睿,刘训臣,李磊,等. 分层比对分层旋流火焰稳定模式及流动结构的影响[J]. 空气动力学学报,2020,38(3): 619-628. WANG Sirui,LIU Xunchen,LI Lei,et al. Effects of stratification ratio on flame stabilization and flow structure in stratified swirling flame[J]. Acta Aerodynamica Sinica,2020,38(3): 619-628. (in Chinese

    WANG Sirui, LIU Xunchen, LI Lei, et al. Effects of stratification ratio on flame stabilization and flow structure in stratified swirling flame[J]. Acta Aerodynamica Sinica, 2020, 38(3): 619-628. (in Chinese)
    [14] 张弛,周宇晨,韩啸,等. 同心旋流分层预混火焰的动力学模态分析[J]. 推进技术,2020,41(3): 595-604. ZHANG Chi,ZHOU Yuchen,HAN Xiao,et al. Dynamic mode analysis on internally-staged-swirling stratified premixed flame[J]. Journal of Propulsion Technology,2020,41(3): 595-604. (in Chinese

    ZHANG Chi, ZHOU Yuchen, HAN Xiao, et al. Dynamic mode analysis on internally-staged-swirling stratified premixed flame[J]. Journal of Propulsion Technology, 2020, 41(3): 595-604. (in Chinese)
    [15] 魏为,许全宏,苏童,等. 不同气量分配下声激励对中心分级旋流火焰动力学的影响[J]. 航空动力学报,2022,37(8): 1607-1619. WEI Wei,XU Quanhong,SU Tong,et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power,2022,37(8): 1607-1619. (in Chinese

    WEI Wei, XU Quanhong, SU Tong, et al. Effects of acoustic excitation on the dynamics of centrically-staged swirling stratified flames under different air split ratios[J]. Journal of Aerospace Power, 2022, 37(8): 1607-1619. (in Chinese)
    [16] GUYOT D,TEA G,APPEL C. Low NOx lean premix reheat combustion in alstom GT24 gas turbines[J]. Journal of Engineering for Gas Turbines and Power,2016,138(5): 051503. doi: 10.1115/1.4031543
    [17] TSCHUOR R,FRUECHTEL G,DE JONGE J,et al. Mechanical design and manufacturing of improved GT24 SEV burner[R]. Montréal: ASME,2015.
    [18] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press,2000.
    [19] SHUR M L,SPALART P R,STRELETS M K,et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow,2008,29(6): 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [20] 杨金虎. FGM预混及部分预混湍流燃烧模型研究与应用[D]. 北京: 中国科学院研究生院(工程热物理研究所),2012. YANG Jinhu. FGM based premixed and partially premixed turbulent combustion model—research and application[D]. Beijing: Institute of Engineering Thermophysics,Chinese Academy of Sciences,2012. (in Chinese

    YANG Jinhu. FGM based premixed and partially premixed turbulent combustion model—research and application[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012. (in Chinese)
  • 加载中
图(16)
计量
  • 文章访问数:  15
  • HTML浏览量:  10
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 网络出版日期:  2024-05-24

目录

    /

    返回文章
    返回