留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转子系统的动力学“临界跟随”特征及其试验验证

周旋 廖明夫 侯理臻 朱东华 王瑞 景琰婷

周旋, 廖明夫, 侯理臻, 等. 转子系统的动力学“临界跟随”特征及其试验验证[J]. 航空动力学报, 2024, 39(7):20230690 doi: 10.13224/j.cnki.jasp.20230690
引用本文: 周旋, 廖明夫, 侯理臻, 等. 转子系统的动力学“临界跟随”特征及其试验验证[J]. 航空动力学报, 2024, 39(7):20230690 doi: 10.13224/j.cnki.jasp.20230690
ZHOU Xuan, LIAO Mingfu, HOU Lizhen, et al. Characteristics and experimental verification of “critical following speed” on rotor system[J]. Journal of Aerospace Power, 2024, 39(7):20230690 doi: 10.13224/j.cnki.jasp.20230690
Citation: ZHOU Xuan, LIAO Mingfu, HOU Lizhen, et al. Characteristics and experimental verification of “critical following speed” on rotor system[J]. Journal of Aerospace Power, 2024, 39(7):20230690 doi: 10.13224/j.cnki.jasp.20230690

转子系统的动力学“临界跟随”特征及其试验验证

doi: 10.13224/j.cnki.jasp.20230690
基金项目: 国家科技重大专项(2017-Ⅳ-0001-0038)
详细信息
    作者简介:

    周旋(1984-),女,博士生,研究领域为转子动力学

    通讯作者:

    廖明夫(1960-),男,教授,博士,研究领域为航空发动机转子动力学、风能工程。E-mail:mfliao@nwpu.edu.cn

  • 中图分类号: V231.96

Characteristics and experimental verification of “critical following speed” on rotor system

  • 摘要:

    为了深入探究转子系统“临界跟随”现象的机理,建立悬臂转子模型,分析“临界跟随”状态下的转子动力学特性,设计搭建了悬臂转子试验器,并在高速超转试验台上进行试验验证。研究结果表明:当直径转动惯量与极转动惯量相等时,从一定的转速开始,盘的振动摆角响应会随转速持续增大;具有“临界跟随”特征的模态振型表现为,直径转动惯量与极转动惯量相等的盘位于振型节点,在不平衡力矩作用下,盘心振动位移为零,但盘的摆角不为零且随转速增加而增大,其相位角维持不变;若转子结构并非简单的单盘,则需计算组件的直径转动惯量与极转动惯量,以此检验是否会出现“临界跟随”;考虑转轴质量时,盘的惯量符合直径转动惯量与极转动惯量相等时,不会出现“临界跟随”现象,但会出现自振频率在较宽的范围与转子转速靠近,使“共振”区域变宽;“临界跟随”使得转子对不平衡激励非常敏感,应在转子动力学设计时予以避免。

     

  • 图 1  悬臂转子动力学模型

    Figure 1.  Dynamic model of cantilever rotor

    图 2  转子系统坎贝尔图

    Figure 2.  Campbell diagram of rotor system

    图 3  自振频率线上的振型点及其对应的振型

    Figure 3.  Mode shapes of the points on the natural frequency line

    图 4  转子第1阶和第2阶正进动自振频率线及其斜率随转速的变化

    Figure 4.  Variations of 1st and 2nd natural frequency and their slopes with rotational speed

    图 5  盘的振动摆角随转速的变化(Ip=Id

    Figure 5.  Disk pendulum angle with the rotational speed (Ip=Id

    图 6  转子的坎贝尔图(Ip=2IdIp=Id

    Figure 6.  Campbell diagram of rotor system (Ip=2Id and Ip=Id

    图 7  转子的前4阶振型(Ip=2IdIp=Id

    Figure 7.  Four-order mode shapes of rotor system (Ip=2Id and Ip=Id

    图 8  超转试验台

    Figure 8.  Overspeed test bench

    图 9  驱动轴

    Figure 9.  Actuating shaft

    图 10  试验件结构与几何尺寸(单位:mm)

    Figure 10.  Structure and geometrical dimension of test rig (unit: mm)

    图 11  试验器转子1

    Figure 11.  Rotor test rig 1

    图 12  试验转子2

    Figure 12.  Rotor test rig 2

    图 13  试验转子1的坎贝尔图

    Figure 13.  Campbell diagram of rotor test rig 1

    图 14  试验转子1的两阶振型

    Figure 14.  Two-order mode shapes of rotor test rig 1

    图 15  试验转子2的坎贝尔图

    Figure 15.  Campbell diagram of rotor test rig 2

    图 16  试验转子2的2阶振型

    Figure 16.  Two-order mode shapes of rotor test rig 2

    图 17  试验转子1上的3个位移传感器

    Figure 17.  Three displacement sensors on rotor test rig 1

    图 18  试验转子2上的位移传感器

    Figure 18.  Displacement sensor on rotor test rig 2

    图 19  试验转子1的振动位移响应曲线

    Figure 19.  Vibration amplitude response curves of rotor test rig 1

    图 20  试验转子1的振动相位响应曲线

    Figure 20.  Vibration phase response curves of rotor test rig 1

    图 21  试验转子2振动位移响应曲线

    Figure 21.  Vibration amplitude response curves of rotor test rig 2

    表  1  转子模型参数

    Table  1.   Parameters of rotor system

    参数数值参数数值
    L/m1.0a/m0.6
    b/m0.4D/m0.03
    E/1011 Pa2.09H/m0.2
    Δm/kg0.001R/m0.1
    m/kg40.0Ip/(kg·m20.4
    sb1/106 (N/m)4.0sb2/106 (N/m)5.0
    c b1/(N·s/m)200c b2/(N·s/m)200
    ρ/(kg/m37870
    下载: 导出CSV

    表  2  两件试验件的惯量参数

    Table  2.   Inertia parameters of two rotor test rigs

    试验件 质量/
    kg
    极转动惯量
    Ip/(kg·m2
    直径转动惯量
    Id/(kg·m2
    Ip/Id
    试验件1 9.18 0.0173 0.0168 1.02976
    试验件2 8.17 0.017 0.206 0.0825
    下载: 导出CSV
  • [1] GASCH R,NORDMANN R,PFÜTZNER H. Rotordynamik[M]. Berlin: Springer Berlin Heidelberg,2002.
    [2] 廖明夫. 航空发动机转子动力学[M]. 西安: 西北工业大学出版社,2015. LIAO Mingfu. Rotor dynamics of aero-engine[M]. Xi’an: Northwestern Polytechnical University Press,2015. (in Chinese

    LIAO Mingfu. Rotor dynamics of aero-engine[M]. Xi’an: Northwestern Polytechnical University Press, 2015. (in Chinese)
    [3] 李岩,廖明夫,蒋云帆,等. 航空发动机双转子系统“临界跟随” 现象的机理及影响[J]. 航空动力学报,2019,34(11): 2403-2413. LI Yan,LIAO Mingfu,JIANG Yunfan,et al. Mechanism and effect of “critical follower speed” on dual-rotor system of aero-engines[J]. Journal of Aerospace Power,2019,34(11): 2403-2413. (in Chinese

    LI Yan, LIAO Mingfu, JIANG Yunfan, et al. Mechanism and effect of “critical follower speed” on dual-rotor system of aero-engines[J]. Journal of Aerospace Power, 2019, 34(11): 2403-2413. (in Chinese)
    [4] 廖明夫,王四季,李全坤,等. 航空发动机转子-支承系统的振动-下册[M]. 北京: 科学出版社,2023. LIAO Mingfu,WANG Siji,LI Quankun,et al. Vibration of aeroengine rotor-support system-volume Ⅱ[M]. Beijing: Science Press,2023. (in Chinese

    LIAO Mingfu, WANG Siji, LI Quankun, et al. Vibration of aeroengine rotor-support system-volume Ⅱ[M]. Beijing: Science Press, 2023. (in Chinese)
    [5] 李岩. 航空发动机转子系统可容模态优化设计方法与实验研究[D]. 西安: 西北工业大学,2020. LI Yan. Optimization design and experimental verification of bearable modes of aero-engine rotor system [D]. Xi’an: Northwestern Polytechnical University,2020. (in Chinese

    LI Yan. Optimization design and experimental verification of bearable modes of aero-engine rotor system [D]. Xi’an: Northwestern Polytechnical University, 2020. (in Chinese)
    [6] 侯理臻,王伟,王珺,等. 轮盘超转研究中的“临界跟随”现象[J]. 西安交通大学学报,2023,34(11): 2403-2413. HOU Lizhen,WANG Wei,WANG Jun,et al. The phenomenon of “critical follower speed” on disk overspeed research[J]. Journal of Xi’an Jiaotong University,2023,34(11): 2403-2413. (in Chinese

    HOU Lizhen, WANG Wei, WANG Jun, et al. The phenomenon of “critical follower speed” on disk overspeed research[J]. Journal of Xi’an Jiaotong University, 2023, 34(11): 2403-2413. (in Chinese)
    [7] ALLMON B L,GLYNN C C,FISHER K L,et al. Method and apparatus for supporting rotor assemblies during unbalances: US6491497[P]. 2002-12-10.
    [8] DOERFLEIN T M,WILTON S A,ALLMON B L. Method and apparatus for supporting rotor assemblies during unbalances: US6783319[P]. 2004-08-31.
    [9] STORACE A F. Fan assembly support system: US6325546[P]. 2001-12-04.
    [10] HARRIS C M. The shock and vibration handbook [M]. New York: McGraw Hill,1996.
    [11] 蒋云帆,廖明夫,刘永泉,等. 同转/对转双转子系统的动力学特性[J]. 航空动力学报,2013,28(12): 2771-2780. JIANG Yunfan,LIAO Mingfu,LIU Yongquan,et al. Dynamic characteristics of co-rotating/counter-rotating dual-rotor system[J]. Journal of Aerospace Power,2013,28(12): 2771-2780. (in Chinese

    JIANG Yunfan, LIAO Mingfu, LIU Yongquan, et al. Dynamic characteristics of co-rotating/counter-rotating dual-rotor system[J]. Journal of Aerospace Power, 2013, 28(12): 2771-2780. (in Chinese)
    [12] 张大义,刘烨辉,洪杰,等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术,2015,36(5): 768-773. ZHANG Dayi,LIU Yehui,HONG Jie,et al. Investigation on dynamical modeling and vibration characteristics for aero engine[J]. Journal of Propulsion Technology,2015,36(5): 768-773. (in Chinese

    ZHANG Dayi, LIU Yehui, HONG Jie, et al. Investigation on dynamical modeling and vibration characteristics for aero engine[J]. Journal of Propulsion Technology, 2015, 36(5): 768-773. (in Chinese)
    [13] 廖明夫,谭大力,耿建明,等. 航空发动机高压转子的结构动力学设计方法[J]. 航空动力学报,2014,29(7): 1505-1519. LIAO Mingfu,TAN Dali,GENG Jianming,et al. Structure dynamics design method of aero-engine high pressure rotor[J]. Journal of Aerospace Power,2014,29(7): 1505-1519. (in Chinese

    LIAO Mingfu, TAN Dali, GENG Jianming, et al. Structure dynamics design method of aero-engine high pressure rotor[J]. Journal of Aerospace Power, 2014, 29(7): 1505-1519. (in Chinese)
    [14] 蔡全卓. 典型航空发动机轮盘破裂失效研究[D]. 杭州: 浙江大学,2017. CAI Quanzhuo. Research on burst failure of typical aeroengine disk[D]. Hangzhou: Zhejiang University,2017. (in Chinese

    CAI Quanzhuo. Research on burst failure of typical aeroengine disk[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [15] 胡清清. 基于失效模式的轮盘破裂转速预测方法研究[D]. 杭州: 浙江大学,2020. HU Qingqing. Research on disk burst speed prediction method based on failure mode[D]. Hangzhou: Zhejiang University,2020. (in Chinese

    HU Qingqing. Research on disk burst speed prediction method based on failure mode[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [16] 金小杰. 航空发动机转子超转破裂预测方法评估与应用[D]. 南京: 南京航空航天大学,2018. JIN Xiaojie. Evaluation and application of the overspeed burst prediction method on aero-engine rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018. (in Chinese

    JIN Xiaojie. Evaluation and application of the overspeed burst prediction method on aero-engine rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [17] 谢文涛. 航空发动机动力涡轮包容设计与验证技术研究[D]. 上海: 上海交通大学,2017. XIE Wentao. Containment design and verification technology research on powerturbine of aeroengine[D]. Shanghai: Shanghai Jiao Tong University,2017. (in Chinese

    XIE Wentao. Containment design and verification technology research on powerturbine of aeroengine[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
    [18] 王浩然. 航空发动机轮盘破裂分析方法研究与应用[D]. 南京: 南京航空航天大学,2016. WANG Haoran. Research and application of analysis method of aero-engine disc fracture[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2016. (in Chinese

    WANG Haoran. Research and application of analysis method of aero-engine disc fracture[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  29
  • HTML浏览量:  16
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回