Effect of throat size of turbine guide on performance of gas turbine starter
-
摘要:
以某燃气涡轮起动机的燃气涡轮导向器为研究对象,采用试验及数值模拟方法研究了燃气涡轮导向器喉道尺寸对燃气涡轮起动机整机及部件性能的影响。针对A、B、C型三种燃气涡轮导向器(喉道平均外径分别为111.27、111.94、112.34 mm)的试验研究结果表明:C′型燃气涡轮起动机较A′型燃气涡轮起动机,正常起动时间缩短14%,失效起动输出轴脱开转速升高7.1%,最大输出功率增加11.6%,起动机性能显著提高。数值结果表明:C″型较A″型涡轮级流量增加3.6%,动力涡轮最大输出功率增加12.2%,动力涡轮功率增加归因于流量增加、温度增加、温降增加的叠加效应。总之,燃气涡轮导向器喉道外径通过影响涡轮级性能改变了燃气涡轮起动机整机的匹配特性,使整机性能存在一定的分散性。
Abstract:A gas turbine guide on a gas turbine starter was taken as the research object, and the effects of throat size of gas turbine guide on the performance of gas turbine starter and components were studied using experimental methods and numerical simulation. The results of experimental research on A, B, C types of gas turbine guide (average outer diameter of the throat was 111.27, 111.94, 112.34 mm) indicated: type C′ starter compared with type A′ starter, normal starting time became shorter by 14%, output shaft disengagement speed of lose efficacy starting increased by 7.1%, maximum output power increased by 11.6%, the performance of starter was improved significantly. Numerical research results indicated: type C″ compared with type A″, the flow rate of turbine stage increased by 3.6%, maximum output power of power turbine increased by 12.2%. The increase in power turbine power was attributed to the combined effect of increased flow rate, increased temperature and increased temperature drop. In summary, the outer diameter of gas turbine guide throat changed the matching point of entire gas turbine by affecting the performance of turbine stage, then the overall performance exhibited a certain degree of dispersion.
-
Key words:
- gas turbine starter /
- turbine guide /
- throat size /
- outer diameter /
- power turbine /
- output power
-
表 1 外径尺寸计量结果
Table 1. Outer diameter measurement results
导向器代号 计量尺寸/mm 设计尺寸/mm A ϕ111.18~ϕ111.36 $ {\phi }1{11.6}_{-0.35}^{+0.67} $
($ {\phi } $111.25~$ {\phi } $112.27)B ϕ111.89~ϕ111.99 C ϕ112.22~ϕ112.46 表 2 第一次正常起动试验条件
Table 2. Conditions for the first normal start experiment
起动机 大气压力/hPa 大气温度/K 燃气涡轮转速/(r/min) A′型 1016 302.1 63605 B′型 1018 304.6 63415 C′型 1016 302 63371 表 3 整机性能数据及修正值
Table 3. Overall performance data and corrected value
起动机 序号 起动类型 大气
压力/hPa大气
温度/K起动工作
时间/s燃气涡轮
转速/(r/min)压气机出口
压力/hPa输出轴脱开
转速/(r/min)最大输出
功率/kW实测 修正 实测 修正 实测 修正 实测 修正 实测 修正 A′型 1 正常起动 1016 302.1 33 30.6 63605 63680 1990 2120 5680 39.8 2 失效起动 1016 302.7 58.8 63649 63727 1980 2110 3038 3243 40.4 44.7 3 失效起动 1015 302.6 58.8 63678 63755 2010 2140 3062 3268 40.9 45.3 4 正常起动 1017 303.1 33.6 31 63605 63685 1970 2110 5755 41.8 B′型 1 正常起动 1018 304.6 30.1 27.3 63415 63503 1920 2070 5655 44.1 2 失效起动 1016 305.2 58.9 63488 63579 1900 2050 3176 3417 43.3 48.6 3 失效起动 1020 304.5 59 63517 63604 1920 2070 3213 3433 44.1 49 4 正常起动 1013 307.9 30.9 27.5 63444 63549 1880 2060 5673 43.7 C′型 1 正常起动 1016 302 28.7 26.3 63371 63445 1920 2050 5660 45.8 2 失效起动 1014 303.1 58.6 63547 63627 1910 2050 3257 3473 45 49.9 3 失效起动 1015 304.2 58.8 63517 63603 1900 2050 3245 3474 44.8 50 4 正常起动 1016 303.6 28.2 25.5 63415 63498 1890 2040 5673 46.6 表 4 试验结果对比
Table 4. Comparion of experimental results
试验参数 A′型起动机 B′型起动机 C′型起动机 变化量/% 正常起动工作时间/s 30.6 27.3 26.3 −14 失效起动脱开转速/(r/min) 3243 3417 3473 7.1 最大输出功率/kW 44.7 48.6 49.9 11.6 离心压气机压比 3.09 3.04 3.02 −2.3 表 5 数值计算条件
Table 5. Numerical calculation conditions
参数 数值 环境温度/K 288 环境压力/hPa 1013 离心压气机压比 3.2 燃烧室总压恢复系数 0.95 燃烧室出口温度/K 1100 燃气涡轮转速/(r/min) 64000 表 6 最大功率点性能对比
Table 6. Comparison of maximum power point performance
计算参数 A″模型 B″模型 C″模型 变化量/% 导向器喉道外径/mm $\phi $111.27 $\phi $111.94 $\phi $112.34 流量$ {W}_{\mathrm{t}\mathrm{h}} $/(kg/s) 0.6425 0.6565 0.6657 3.6 燃气涡轮出口温度$T_1^* $/K 960.4 964.5 967.3 0.73 燃气涡轮出口压力$p_1^* $/hPa 1626.2 1661 1684.7 3.6 燃气涡轮级膨胀比p*/$p_1^* $ 1.894 1.854 1.828 −3.5 燃气涡轮级温降$ \nabla {T}_{1} $/K 139.6 135.5 132.7 −4.9 燃气涡轮输出功率/kW 102.9 102.2 101.4 −1.5 动力涡轮出口温度$T_2^* $/K 887.8 888.2 888.6 0.1 动力涡轮出口压力$p_2^* $/hPa 1095.1 1097.7 1100 0.45 动力涡轮级膨胀比$p_1^* $/$p_2^* $ 1.485 1.513 1.532 3.2 动力涡轮级温降$ \nabla {T}_{2} $/K 72.6 76.3 78.7 8.4 动力涡轮输出功率/kW 52.6 56.4 59 12.2 出口总温$T_0^* $/K 887.8 888.2 888.7 0.1 出口总压$p_0^* $/hPa 1083.5 1085.5 1087.5 0.37 -
[1] HAROLD E R. Analytical determination of radial inflow turbine design geometry for maximum efficiency[R]. NASA TN D-4384,1968 [2] REICHERT A W,SIMON H. Design and flow field calculations for transonic and supersonic radial inflow turbine guide vanes[J]. Journal of Turbomachinery,1997,119(1): 103-113. doi: 10.1115/1.2840999 [3] REICHERT A W,SIMON H. Numerical investigations on the optimum design of radial inflow turbine guide vanes: 94-GT-061[R]. Hague,Netherlands: ASME,1994. [4] 邓清华,丰镇平. 微型燃气轮机向心透平导向器的流场分析与设计研究[J]. 西安交通大学学报,2005,39(9): 962-965. DENG Qinghua,FENG Zhenping. Flow analysis and design of radial inflow turbine guide vanes for microturbine[J]. Journal of Xi’an Jiaotong University,2005,39(9): 962-965. (in ChineseDENG Qinghua, FENG Zhenping. Flow analysis and design of radial inflow turbine guide vanes for microturbine[J]. Journal of Xi’an Jiaotong University, 2005, 39(9): 962-965. (in Chinese) [5] 宣建光,邱建,夏晨,等. 一种微型涡轮发动机导向器改进方案[J]. 航空动力学报,2010,25(12): 2690-2696. XUAN Jianguang,QIU Jian,XIA Chen,et al. Improvement of a micro-turbine nozzle[J]. Journal of Aerospace Power,2010,25(12): 2690-2696. (in ChineseXUAN Jianguang, QIU Jian, XIA Chen, et al. Improvement of a micro-turbine nozzle[J]. Journal of Aerospace Power, 2010, 25(12): 2690-2696. (in Chinese) [6] 周逊,韩万金,王仲奇. 低压涡轮导向器气动性能的实验研究[J]. 热力透平,2007,36(2): 92-96. ZHOU Xun,HAN Wanjin,WANG Zhongqi. Experimental investigation of aerodynamic characteristics of LP turbine guide vane[J]. Thermal Turbine,2007,36(2): 92-96. (in ChineseZHOU Xun, HAN Wanjin, WANG Zhongqi. Experimental investigation of aerodynamic characteristics of LP turbine guide vane[J]. Thermal Turbine, 2007, 36(2): 92-96. (in Chinese) [7] 朱兰,张剑,卿雄杰. 高压涡轮导向器扇形叶栅试验及改进设计验证[J]. 燃气涡轮试验与研究,2014,27(5): 19-24. ZHU Lan,ZHANG Jian,QING Xiongjie. Experiment and improved design verification on the sector cascade of high pressure turbine nozzle[J]. Gas Turbine Experiment and Research,2014,27(5): 19-24. (in ChineseZHU Lan, ZHANG Jian, QING Xiongjie. Experiment and improved design verification on the sector cascade of high pressure turbine nozzle[J]. Gas Turbine Experiment and Research, 2014, 27(5): 19-24. (in Chinese) [8] 安柏涛,韩万今,王松涛,等. 几何参数对涡轮低压导向器变工况性能的影响[J]. 航空动力学报,2004,19(1): 94-100. AN Baitao,HAN Wanjin,WANG Songtao,et al. Effects of geometry parameters on incidence characteristics of turbine low pressure guide vane[J]. Journal of Aerospace Power,2004,19(1): 94-100. (in ChineseAN Baitao, HAN Wanjin, WANG Songtao, et al. Effects of geometry parameters on incidence characteristics of turbine low pressure guide vane[J]. Journal of Aerospace Power, 2004, 19(1): 94-100. (in Chinese) [9] 郑涛,赵克云,吴仁辉. 水流法测量涡轮导向器喉道面积[J]. 推进技术,1997,18(4): 106-108. ZHENG Tao,ZHAO Keyun,WU Renhui. Measurement of turborotor throat area by water flow[J]. Journal of Propulsion Technology,1997,18(4): 106-108. (in ChineseZHENG Tao, ZHAO Keyun, WU Renhui. Measurement of turborotor throat area by water flow[J]. Journal of Propulsion Technology, 1997, 18(4): 106-108. (in Chinese) [10] 屈云凤,张志强,曾令玉,等. 型线法测量涡轮导向器喉道面积的原理和应用[J]. 测控技术,2015,34: 160-163. QU Yunfeng,ZHANG Zhiqiang,ZENG Lingyu,et al. Principle and application of turbine nozzle throat area measurement by profile method[J]. Measurement & Control Technology,2015,34: 160-163. (in ChineseQU Yunfeng, ZHANG Zhiqiang, ZENG Lingyu, et al. Principle and application of turbine nozzle throat area measurement by profile method[J]. Measurement & Control Technology, 2015, 34: 160-163. (in Chinese) [11] 王振兴,范明争,张盛珺,等. 涡轮导向器喉道面积三坐标测量不确定度评估[J]. 航空制造技术,2022,65(5): 68-74. WANG Zhenxing,FAN Mingzheng,ZHANG Shengjun,et al. Measurement uncertainty evaluation of turbine nozzle throat area measured by coordinate measurement machine[J]. Aeronautical Manufacturing Technology,2022,65(5): 68-74. (in ChineseWANG Zhenxing, FAN Mingzheng, ZHANG Shengjun, et al. Measurement uncertainty evaluation of turbine nozzle throat area measured by coordinate measurement machine[J]. Aeronautical Manufacturing Technology, 2022, 65(5): 68-74. (in Chinese) [12] 闻雪友,钱振岳. 涡轮导向器面积调整对燃气轮机性能的影响[J]. 舰船科学技术,1981,3(12): 74-88,93. WEN Xueyou,QIAN Zhenyue. Influence of turbine guide area adjustment on gas turbine performance[J]. Ship Science and Technology,1981,3(12): 74-88,93. (in ChineseWEN Xueyou, QIAN Zhenyue. Influence of turbine guide area adjustment on gas turbine performance[J]. Ship Science and Technology, 1981, 3(12): 74-88, 93. (in Chinese) [13] DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299 [14] ROSE M G,HARVEY N W. Turbomachinery wakes: differential work and mixing losses[J]. Journal of Turbomachinery,2000,122(1): 68-77. doi: 10.1115/1.555429 [15] WALTERS D K,LEYLEK J H. Impact of film-cooling jets on turbine aerodynamic losses[J]. Journal of Turbomachinery,2000,122(3): 537-545. doi: 10.1115/1.1303818 [16] 石德永,宋文艳,浮强. 导向器叶片尾缘厚度对涡轮性能影响研究[J]. 机械设计与制造,2013(11): 102-104,108. SHI Deyong,SONG Wenyan,FU Qiang. Research of stator trailing edge thickness effects on turbine performance[J]. Machinery Design & Manufacture,2013(11): 102-104,108. (in Chinese doi: 10.3969/j.issn.1001-3997.2013.11.031SHI Deyong, SONG Wenyan, FU Qiang. Research of stator trailing edge thickness effects on turbine performance[J]. Machinery Design & Manufacture, 2013(11): 102-104, 108. (in Chinese) doi: 10.3969/j.issn.1001-3997.2013.11.031 [17] 徐志伟,郭昊雁,郑振江,等. 向心涡轮导向器设计改进及应用[J]. 推进技术,2017,38(10): 2358-2364. XU Zhiwei,GUO Haoyan,ZHENG Zhenjiang,et al. Improvement of design technology for a radial inflow turbine guide vane and its application[J]. Journal of Propulsion Technology,2017,38(10): 2358-2364. (in ChineseXU Zhiwei, GUO Haoyan, ZHENG Zhenjiang, et al. Improvement of design technology for a radial inflow turbine guide vane and its application[J]. Journal of Propulsion Technology, 2017, 38(10): 2358-2364. (in Chinese) [18] 陈靖华,徐伟祖,李传鹏. 空气涡轮起动机性能数值仿真和试验研究[J]. 南京航空航天大学学报,2022,54(4): 654-661. CHEN Jinghua,XU Weizu,LI Chuanpeng. Numerical simulation and experimental investigation on performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics,2022,54(4): 654-661. (in ChineseCHEN Jinghua, XU Weizu, LI Chuanpeng. Numerical simulation and experimental investigation on performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 654-661. (in Chinese) [19] 陈靖华,徐伟祖,李传鹏. 空气涡轮起动机优化设计和匹配特性[J]. 南京航空航天大学学报,2023,55(2): 226-232. CHEN Jinghua,XU Weizu,LI Chuanpeng. Optimization design and matching performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics,2023,55(2): 226-232. (in ChineseCHEN Jinghua, XU Weizu, LI Chuanpeng. Optimization design and matching performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(2): 226-232. (in Chinese) [20] 黄维娜,邹正平,李维,等. 航空发动机涡轮设计[M]. 北京: 科学出版社,2022. HUANG Weina,ZOU Zhengping,LI Wei. Turbine design of aero-engine[M]. Beijing: Science Press,2022. (in ChineseHUANG Weina, ZOU Zhengping, LI Wei. Turbine design of aero-engine[M]. Beijing: Science Press, 2022. (in Chinese)