留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮导向器喉道尺寸对燃气涡轮起动机性能的影响

樊小倩 汪洋冰 刘一鸣 白杰

樊小倩, 汪洋冰, 刘一鸣, 等. 涡轮导向器喉道尺寸对燃气涡轮起动机性能的影响[J]. 航空动力学报, 2024, 39(9):20230775 doi: 10.13224/j.cnki.jasp.20230775
引用本文: 樊小倩, 汪洋冰, 刘一鸣, 等. 涡轮导向器喉道尺寸对燃气涡轮起动机性能的影响[J]. 航空动力学报, 2024, 39(9):20230775 doi: 10.13224/j.cnki.jasp.20230775
FAN Xiaoqian, WANG Yangbing, LIU Yiming, et al. Effect of throat size of turbine guide on performance of gas turbine starter[J]. Journal of Aerospace Power, 2024, 39(9):20230775 doi: 10.13224/j.cnki.jasp.20230775
Citation: FAN Xiaoqian, WANG Yangbing, LIU Yiming, et al. Effect of throat size of turbine guide on performance of gas turbine starter[J]. Journal of Aerospace Power, 2024, 39(9):20230775 doi: 10.13224/j.cnki.jasp.20230775

涡轮导向器喉道尺寸对燃气涡轮起动机性能的影响

doi: 10.13224/j.cnki.jasp.20230775
基金项目: 集团创新专项(YY20012-02)
详细信息
    作者简介:

    樊小倩(1989-),女,工程师,硕士,研究领域为燃气涡轮起动机设计及涡轮气动热力学。E-mail:wsfxqsydx@163.com

  • 中图分类号: V231.3

Effect of throat size of turbine guide on performance of gas turbine starter

  • 摘要:

    以某燃气涡轮起动机的燃气涡轮导向器为研究对象,采用试验及数值模拟方法研究了燃气涡轮导向器喉道尺寸对燃气涡轮起动机整机及部件性能的影响。针对A、B、C型三种燃气涡轮导向器(喉道平均外径分别为111.27、111.94、112.34 mm)的试验研究结果表明:C′型燃气涡轮起动机较A′型燃气涡轮起动机,正常起动时间缩短14%,失效起动输出轴脱开转速升高7.1%,最大输出功率增加11.6%,起动机性能显著提高。数值结果表明:C″型较A″型涡轮级流量增加3.6%,动力涡轮最大输出功率增加12.2%,动力涡轮功率增加归因于流量增加、温度增加、温降增加的叠加效应。总之,燃气涡轮导向器喉道外径通过影响涡轮级性能改变了燃气涡轮起动机整机的匹配特性,使整机性能存在一定的分散性。

     

  • 图 1  燃气涡轮起动机结构

    Figure 1.  Structural diagram of gas turbine starter

    图 2  起动机核心机

    Figure 2.  Core engine of starter

    图 3  燃气涡轮导向器结构示意图

    Figure 3.  Schematic diagram of gas turbine guide

    图 4  燃气涡轮起动机试验台示意图

    Figure 4.  Schematic diagram of gas turbine starter experimental bench

    图 5  飞轮结构

    Figure 5.  Flywheel struture

    图 6  第一次正常起动输出性能

    Figure 6.  Output performance of the first normal start

    图 7  数值模拟几何模型

    Figure 7.  Numerical simulation geometry model

    图 8  网格S1图

    Figure 8.  Grid S1 diagram

    图 9  动力涡轮输出性能

    Figure 9.  Output performance of power turbine

    图 10  沿流向各界面参数变化趋势

    Figure 10.  Trend of parameter changes at various interfaces along the flow direction

    表  1  外径尺寸计量结果

    Table  1.   Outer diameter measurement results

    导向器代号 计量尺寸/mm 设计尺寸/mm
    A ϕ111.18~ϕ111.36 $ {\phi }1{11.6}_{-0.35}^{+0.67} $
    ($ {\phi } $111.25~$ {\phi } $112.27)
    B ϕ111.89~ϕ111.99
    C ϕ112.22~ϕ112.46
    下载: 导出CSV

    表  2  第一次正常起动试验条件

    Table  2.   Conditions for the first normal start experiment

    起动机大气压力/hPa大气温度/K燃气涡轮转速/(r/min)
    A′型1016302.163605
    B′型1018304.663415
    C′型101630263371
    下载: 导出CSV

    表  3  整机性能数据及修正值

    Table  3.   Overall performance data and corrected value

    起动机 序号 起动类型 大气
    压力/hPa
    大气
    温度/K
    起动工作
    时间/s
    燃气涡轮
    转速/(r/min)
    压气机出口
    压力/hPa
    输出轴脱开
    转速/(r/min)
    最大输出
    功率/kW
    实测 修正 实测 修正 实测 修正 实测 修正 实测 修正
    A′型 1 正常起动 1016 302.1 33 30.6 63605 63680 1990 2120 5680 39.8
    2 失效起动 1016 302.7 58.8 63649 63727 1980 2110 3038 3243 40.4 44.7
    3 失效起动 1015 302.6 58.8 63678 63755 2010 2140 3062 3268 40.9 45.3
    4 正常起动 1017 303.1 33.6 31 63605 63685 1970 2110 5755 41.8
    B′型 1 正常起动 1018 304.6 30.1 27.3 63415 63503 1920 2070 5655 44.1
    2 失效起动 1016 305.2 58.9 63488 63579 1900 2050 3176 3417 43.3 48.6
    3 失效起动 1020 304.5 59 63517 63604 1920 2070 3213 3433 44.1 49
    4 正常起动 1013 307.9 30.9 27.5 63444 63549 1880 2060 5673 43.7
    C′型 1 正常起动 1016 302 28.7 26.3 63371 63445 1920 2050 5660 45.8
    2 失效起动 1014 303.1 58.6 63547 63627 1910 2050 3257 3473 45 49.9
    3 失效起动 1015 304.2 58.8 63517 63603 1900 2050 3245 3474 44.8 50
    4 正常起动 1016 303.6 28.2 25.5 63415 63498 1890 2040 5673 46.6
    下载: 导出CSV

    表  4  试验结果对比

    Table  4.   Comparion of experimental results

    试验参数A′型起动机B′型起动机C′型起动机变化量/%
    正常起动工作时间/s30.627.326.3−14
    失效起动脱开转速/(r/min)3243341734737.1
    最大输出功率/kW44.748.649.911.6
    离心压气机压比3.093.043.02−2.3
    下载: 导出CSV

    表  5  数值计算条件

    Table  5.   Numerical calculation conditions

    参数数值
    环境温度/K288
    环境压力/hPa1013
    离心压气机压比3.2
    燃烧室总压恢复系数0.95
    燃烧室出口温度/K1100
    燃气涡轮转速/(r/min)64000
    下载: 导出CSV

    表  6  最大功率点性能对比

    Table  6.   Comparison of maximum power point performance

    计算参数 A″模型 B″模型 C″模型 变化量/%
    导向器喉道外径/mm $\phi $111.27 $\phi $111.94 $\phi $112.34
    流量$ {W}_{\mathrm{t}\mathrm{h}} $/(kg/s) 0.6425 0.6565 0.6657 3.6
    燃气涡轮出口温度$T_1^* $/K 960.4 964.5 967.3 0.73
    燃气涡轮出口压力$p_1^* $/hPa 1626.2 1661 1684.7 3.6
    燃气涡轮级膨胀比p*/$p_1^* $ 1.894 1.854 1.828 −3.5
    燃气涡轮级温降$ \nabla {T}_{1} $/K 139.6 135.5 132.7 −4.9
    燃气涡轮输出功率/kW 102.9 102.2 101.4 −1.5
    动力涡轮出口温度$T_2^* $/K 887.8 888.2 888.6 0.1
    动力涡轮出口压力$p_2^* $/hPa 1095.1 1097.7 1100 0.45
    动力涡轮级膨胀比$p_1^* $/$p_2^* $ 1.485 1.513 1.532 3.2
    动力涡轮级温降$ \nabla {T}_{2} $/K 72.6 76.3 78.7 8.4
    动力涡轮输出功率/kW 52.6 56.4 59 12.2
    出口总温$T_0^* $/K 887.8 888.2 888.7 0.1
    出口总压$p_0^* $/hPa 1083.5 1085.5 1087.5 0.37
    下载: 导出CSV
  • [1] HAROLD E R. Analytical determination of radial inflow turbine design geometry for maximum efficiency[R]. NASA TN D-4384,1968
    [2] REICHERT A W,SIMON H. Design and flow field calculations for transonic and supersonic radial inflow turbine guide vanes[J]. Journal of Turbomachinery,1997,119(1): 103-113. doi: 10.1115/1.2840999
    [3] REICHERT A W,SIMON H. Numerical investigations on the optimum design of radial inflow turbine guide vanes: 94-GT-061[R]. Hague,Netherlands: ASME,1994.
    [4] 邓清华,丰镇平. 微型燃气轮机向心透平导向器的流场分析与设计研究[J]. 西安交通大学学报,2005,39(9): 962-965. DENG Qinghua,FENG Zhenping. Flow analysis and design of radial inflow turbine guide vanes for microturbine[J]. Journal of Xi’an Jiaotong University,2005,39(9): 962-965. (in Chinese

    DENG Qinghua, FENG Zhenping. Flow analysis and design of radial inflow turbine guide vanes for microturbine[J]. Journal of Xi’an Jiaotong University, 2005, 39(9): 962-965. (in Chinese)
    [5] 宣建光,邱建,夏晨,等. 一种微型涡轮发动机导向器改进方案[J]. 航空动力学报,2010,25(12): 2690-2696. XUAN Jianguang,QIU Jian,XIA Chen,et al. Improvement of a micro-turbine nozzle[J]. Journal of Aerospace Power,2010,25(12): 2690-2696. (in Chinese

    XUAN Jianguang, QIU Jian, XIA Chen, et al. Improvement of a micro-turbine nozzle[J]. Journal of Aerospace Power, 2010, 25(12): 2690-2696. (in Chinese)
    [6] 周逊,韩万金,王仲奇. 低压涡轮导向器气动性能的实验研究[J]. 热力透平,2007,36(2): 92-96. ZHOU Xun,HAN Wanjin,WANG Zhongqi. Experimental investigation of aerodynamic characteristics of LP turbine guide vane[J]. Thermal Turbine,2007,36(2): 92-96. (in Chinese

    ZHOU Xun, HAN Wanjin, WANG Zhongqi. Experimental investigation of aerodynamic characteristics of LP turbine guide vane[J]. Thermal Turbine, 2007, 36(2): 92-96. (in Chinese)
    [7] 朱兰,张剑,卿雄杰. 高压涡轮导向器扇形叶栅试验及改进设计验证[J]. 燃气涡轮试验与研究,2014,27(5): 19-24. ZHU Lan,ZHANG Jian,QING Xiongjie. Experiment and improved design verification on the sector cascade of high pressure turbine nozzle[J]. Gas Turbine Experiment and Research,2014,27(5): 19-24. (in Chinese

    ZHU Lan, ZHANG Jian, QING Xiongjie. Experiment and improved design verification on the sector cascade of high pressure turbine nozzle[J]. Gas Turbine Experiment and Research, 2014, 27(5): 19-24. (in Chinese)
    [8] 安柏涛,韩万今,王松涛,等. 几何参数对涡轮低压导向器变工况性能的影响[J]. 航空动力学报,2004,19(1): 94-100. AN Baitao,HAN Wanjin,WANG Songtao,et al. Effects of geometry parameters on incidence characteristics of turbine low pressure guide vane[J]. Journal of Aerospace Power,2004,19(1): 94-100. (in Chinese

    AN Baitao, HAN Wanjin, WANG Songtao, et al. Effects of geometry parameters on incidence characteristics of turbine low pressure guide vane[J]. Journal of Aerospace Power, 2004, 19(1): 94-100. (in Chinese)
    [9] 郑涛,赵克云,吴仁辉. 水流法测量涡轮导向器喉道面积[J]. 推进技术,1997,18(4): 106-108. ZHENG Tao,ZHAO Keyun,WU Renhui. Measurement of turborotor throat area by water flow[J]. Journal of Propulsion Technology,1997,18(4): 106-108. (in Chinese

    ZHENG Tao, ZHAO Keyun, WU Renhui. Measurement of turborotor throat area by water flow[J]. Journal of Propulsion Technology, 1997, 18(4): 106-108. (in Chinese)
    [10] 屈云凤,张志强,曾令玉,等. 型线法测量涡轮导向器喉道面积的原理和应用[J]. 测控技术,2015,34: 160-163. QU Yunfeng,ZHANG Zhiqiang,ZENG Lingyu,et al. Principle and application of turbine nozzle throat area measurement by profile method[J]. Measurement & Control Technology,2015,34: 160-163. (in Chinese

    QU Yunfeng, ZHANG Zhiqiang, ZENG Lingyu, et al. Principle and application of turbine nozzle throat area measurement by profile method[J]. Measurement & Control Technology, 2015, 34: 160-163. (in Chinese)
    [11] 王振兴,范明争,张盛珺,等. 涡轮导向器喉道面积三坐标测量不确定度评估[J]. 航空制造技术,2022,65(5): 68-74. WANG Zhenxing,FAN Mingzheng,ZHANG Shengjun,et al. Measurement uncertainty evaluation of turbine nozzle throat area measured by coordinate measurement machine[J]. Aeronautical Manufacturing Technology,2022,65(5): 68-74. (in Chinese

    WANG Zhenxing, FAN Mingzheng, ZHANG Shengjun, et al. Measurement uncertainty evaluation of turbine nozzle throat area measured by coordinate measurement machine[J]. Aeronautical Manufacturing Technology, 2022, 65(5): 68-74. (in Chinese)
    [12] 闻雪友,钱振岳. 涡轮导向器面积调整对燃气轮机性能的影响[J]. 舰船科学技术,1981,3(12): 74-88,93. WEN Xueyou,QIAN Zhenyue. Influence of turbine guide area adjustment on gas turbine performance[J]. Ship Science and Technology,1981,3(12): 74-88,93. (in Chinese

    WEN Xueyou, QIAN Zhenyue. Influence of turbine guide area adjustment on gas turbine performance[J]. Ship Science and Technology, 1981, 3(12): 74-88, 93. (in Chinese)
    [13] DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299
    [14] ROSE M G,HARVEY N W. Turbomachinery wakes: differential work and mixing losses[J]. Journal of Turbomachinery,2000,122(1): 68-77. doi: 10.1115/1.555429
    [15] WALTERS D K,LEYLEK J H. Impact of film-cooling jets on turbine aerodynamic losses[J]. Journal of Turbomachinery,2000,122(3): 537-545. doi: 10.1115/1.1303818
    [16] 石德永,宋文艳,浮强. 导向器叶片尾缘厚度对涡轮性能影响研究[J]. 机械设计与制造,2013(11): 102-104,108. SHI Deyong,SONG Wenyan,FU Qiang. Research of stator trailing edge thickness effects on turbine performance[J]. Machinery Design & Manufacture,2013(11): 102-104,108. (in Chinese doi: 10.3969/j.issn.1001-3997.2013.11.031

    SHI Deyong, SONG Wenyan, FU Qiang. Research of stator trailing edge thickness effects on turbine performance[J]. Machinery Design & Manufacture, 2013(11): 102-104, 108. (in Chinese) doi: 10.3969/j.issn.1001-3997.2013.11.031
    [17] 徐志伟,郭昊雁,郑振江,等. 向心涡轮导向器设计改进及应用[J]. 推进技术,2017,38(10): 2358-2364. XU Zhiwei,GUO Haoyan,ZHENG Zhenjiang,et al. Improvement of design technology for a radial inflow turbine guide vane and its application[J]. Journal of Propulsion Technology,2017,38(10): 2358-2364. (in Chinese

    XU Zhiwei, GUO Haoyan, ZHENG Zhenjiang, et al. Improvement of design technology for a radial inflow turbine guide vane and its application[J]. Journal of Propulsion Technology, 2017, 38(10): 2358-2364. (in Chinese)
    [18] 陈靖华,徐伟祖,李传鹏. 空气涡轮起动机性能数值仿真和试验研究[J]. 南京航空航天大学学报,2022,54(4): 654-661. CHEN Jinghua,XU Weizu,LI Chuanpeng. Numerical simulation and experimental investigation on performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics,2022,54(4): 654-661. (in Chinese

    CHEN Jinghua, XU Weizu, LI Chuanpeng. Numerical simulation and experimental investigation on performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 654-661. (in Chinese)
    [19] 陈靖华,徐伟祖,李传鹏. 空气涡轮起动机优化设计和匹配特性[J]. 南京航空航天大学学报,2023,55(2): 226-232. CHEN Jinghua,XU Weizu,LI Chuanpeng. Optimization design and matching performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics,2023,55(2): 226-232. (in Chinese

    CHEN Jinghua, XU Weizu, LI Chuanpeng. Optimization design and matching performance of air turbine starter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(2): 226-232. (in Chinese)
    [20] 黄维娜,邹正平,李维,等. 航空发动机涡轮设计[M]. 北京: 科学出版社,2022. HUANG Weina,ZOU Zhengping,LI Wei. Turbine design of aero-engine[M]. Beijing: Science Press,2022. (in Chinese

    HUANG Weina, ZOU Zhengping, LI Wei. Turbine design of aero-engine[M]. Beijing: Science Press, 2022. (in Chinese)
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  61
  • HTML浏览量:  28
  • PDF量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-09
  • 网络出版日期:  2024-04-19

目录

    /

    返回文章
    返回