留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级透平试验模化准则研究

石䶮 周晟鋆 黄单 彭生红

石䶮, 周晟鋆, 黄单, 等. 多级透平试验模化准则研究[J]. 航空动力学报, 2024, 39(9):20240143 doi: 10.13224/j.cnki.jasp.20240143
引用本文: 石䶮, 周晟鋆, 黄单, 等. 多级透平试验模化准则研究[J]. 航空动力学报, 2024, 39(9):20240143 doi: 10.13224/j.cnki.jasp.20240143
SHI Yan, ZHOU Shengyun, HUANG Dan, et al. Investigation on test modeling criteria for multistage turbine[J]. Journal of Aerospace Power, 2024, 39(9):20240143 doi: 10.13224/j.cnki.jasp.20240143
Citation: SHI Yan, ZHOU Shengyun, HUANG Dan, et al. Investigation on test modeling criteria for multistage turbine[J]. Journal of Aerospace Power, 2024, 39(9):20240143 doi: 10.13224/j.cnki.jasp.20240143

多级透平试验模化准则研究

doi: 10.13224/j.cnki.jasp.20240143
详细信息
    作者简介:

    石䶮(1983-),男,高级工程师,博士,主要从事重型燃气轮机透平气动设计与试验技术研究。E-mail:shiyan@spic.com.cn

    通讯作者:

    彭生红(1978-),男,研究员,博士生,主要从事重型燃气轮机叶轮机试验技术研究。E-mail:psh-305@163.com

  • 中图分类号: V231.1

Investigation on test modeling criteria for multistage turbine

  • 摘要:

    为提升多级透平中温模化试验的流场相似性,构建并校验了两级透平三维数值模型,定量研究试验模化准则选取对流场相似性的影响,提出了一种调整工质比热比的新方法。结果表明:中温模化条件下的工质比热比与设计值不相等,导致多级透平流场相似性沿流动方向逐渐下降;保证膨胀比模化准则时,末级透平动叶气动载荷系数降低4.78%,出口气流角偏差达3°~5°;保证折合功率模化准则时,末级透平折合转速偏大1.29%,动叶气膜冷气出流背压下降2.5%~6.5%;将空气燃烧转变为燃气再与水蒸气掺混,可以得到与不同等级重型燃气轮机真实燃气比热比相等的试验工质;在中温试验条件下使用该工质,多级透平的折合转速、折合功率、膨胀比相等三个模化准则同时满足,气动参数与设计值偏差不超过−0.54%~0.52%。

     

  • 图 1  透平子午流道

    Figure 1.  Meridian flow passage of turbine

    图 2  数值计算网格与冷气分布

    Figure 2.  Numerical calculation grid and cooling air distribution

    图 3  透平出口温比沿叶展分布

    Figure 3.  Temperature ratio spanwise distribution at turbine outlet

    图 4  透平出口压比沿叶展分布

    Figure 4.  Pressure ratio spanwise distribution at turbine outlet

    图 5  透平流道沿程静压分布

    Figure 5.  Static pressures distribution along turbine flow passage

    图 6  重型燃气轮机透平Smith图

    Figure 6.  Smith chart for heavy duty gas turbine

    图 7  末级透平静叶出口马赫数沿叶展分布

    Figure 7.  Mach number spanwise distribution at vane outlet of last turbine stage

    图 8  末级透平动叶出口马赫数沿叶展分布

    Figure 8.  Mach number spanwise distribution at blade outlet of last turbine stage

    图 9  末级透平静叶出口膨胀比沿叶展分布

    Figure 9.  Expansion ratio spanwise distribution at vane outlet of last turbine stage

    图 10  末级透平动叶出口膨胀比沿叶展分布

    Figure 10.  Expansion ratio spanwise distribution at blade outlet of last turbine stage

    图 11  末级透平动叶出口气流角沿叶展分布

    Figure 11.  Flow angle spanwise distribution at blade outlet of last turbine stage

    图 12  末级透平动叶$ \Delta {p}_{\mathrm{s}} $分布

    Figure 12.  $ \Delta {p}_{\mathrm{s}} $ distribution at blade of last turbine stage

    图 13  工质比热比曲线

    Figure 13.  Specific heat ratio curves of working fluid

    图 14  工质比热比对比

    Figure 14.  Working fluid specific heat ratio comparison

    图 15  末级透平动叶出口气流角沿叶展分布

    Figure 15.  Flow angle spanwise distribution at blade outlet of last turbine stage

    图 16  末级透平动叶出口马赫数沿叶展分布

    Figure 16.  Mach number spanwise distribution at blade outlet of last turbine stage

    图 17  末级透平动叶出口膨胀比沿叶展分布

    Figure 17.  Expansion ratio spanwise distribution at blade outlet of last turbine stage

    表  1  计算边界条件

    Table  1.   Boundary conditions for calculation

    参数试验工况数值计算
    $ {p}_{\mathrm{t},0} $/kPa345.97345.97
    $ {T}_{\mathrm{t},0} $/K709.3709.3
    总-静膨胀比5.2895.289
    转速/(r/min)82838283
    冷气流量/(kg/s)2.082.08
    下载: 导出CSV

    表  2  性能参数对比

    Table  2.   Comparison of performance parameters

    参数 试验
    (RDG29工况)
    数值计算
    总-总膨胀比 4.933 4.909
    动叶进口流量/(kg/s) 11.82 11.96
    总-总效率/% 92.55 92.04
    下载: 导出CSV

    表  3  算例设置与边界条件

    Table  3.   Calculations setting and boundary conditions

    参数 算例A 算例B 算例C
    比热比 1.308 1.354 1.354
    进口总温/K 1588 794 794
    进口总压/kPa 1303 650 650
    转速/(r/min) 12630 8931 8931
    总-静膨胀比 5.289 5.289 5.53
    下载: 导出CSV

    表  4  首级透平参数对比

    Table  4.   Comparison of first turbine stage parameters

    参数 算例A 算例B 算例C
    数值 与算例A的偏差/% 数值 与算例A的偏差/%
    进口总温/K 1588 794 794
    比热比 1.308 1.354 1.354
    折合转速n1 33.19 33.19 0 33.19 0
    折合功率l 0.2089 0.2087 −0.10 0.2094 0.24
    载荷系数ψ 1.586 1.585 −0.06 1.590 0.25
    流量系数φ 0.4904 0.4898 −0.12 0.4909 0.10
    下载: 导出CSV

    表  5  末级透平参数对比

    Table  5.   Comparison of last turbine stage parameters

    参数 算例A 算例B 算例C
    数值 与算例A的偏差/% 数值 与算例A的偏差/%
    进口总温/K 1312.9 640.39 639.9
    比热比 1.318 1.371 1.371
    折合转速n1 36.50 36.96 1.25 36.97 1.29
    折合功率l 0.1675 0.1635 −2.39 0.1715 2.39
    载荷系数ψ 1.051 1.001 −4.78 1.049 −0.20
    流量系数φ 0.5535 0.5363 −3.10 0.5541 0.12
    下载: 导出CSV

    表  6  工质组分调整结果

    Table  6.   Working fluid components adjusting results

    参数 数据
    天然气与空气质量比 0.0236
    燃烧温升/K 985
    燃烧后质量占比/% 氮气* 75.09
    氧气 13.41
    水蒸气 5.18
    二氧化碳 6.32
    水蒸气与燃气质量比 0.5411
    掺混后质量占比/% 氮气* 48.01
    氧气 8.57
    水蒸气 39.38
    二氧化碳 4.04
    注:*表示大气原有二氧化碳和氩气已折算入氮气的质量占比。
    下载: 导出CSV

    表  7  透平参数对比

    Table  7.   Comparison of turbine parameters

    参数 算例A 算例D 偏差/%
    气体常数/(J/(kg·K)) 287.05 353.38
    首级透平 入口比热比 1.308 1.307 −0.08
    折合转速n2 1.840 1.845 0.27
    折合功率l2 0.0009160 0.0009196 0.39
    载荷系数ψ 1.586 1.591 0.32
    流量系数φ 0.4904 0.4897 −0.14
    总-静膨胀比 2.608 2.613 0.19
    首级透平和末级透平入口温度之比 1.210 1.211 0.15
    末级透平 入口比热比 1.318 1.320 0.15
    折合转速n2 2.020 2.026 0.30
    折合功率l2 0.0009283 0.0009332 0.52
    载荷系数ψ 1.051 1.049 −0.19
    流量系数φ 0.553 0.550 −0.54
    总-静膨胀比 2.195 2.190 −0.23
    下载: 导出CSV
  • [1] 吴法勇,马宏伟,马磊,等. 航空发动机涡轮试验[M]. 北京: 科学出版社,2022. WU Fayong,MA Hongwei,MA Lei,et al. Aircraft engine turbine test[M]. Beijing: Science Press,2022. (in Chinese

    WU Fayong, MA Hongwei, MA Lei, et al. Aircraft engine turbine test[M]. Beijing: Science Press, 2022. (in Chinese)
    [2] TSUKUDA Y,AKITA E,ARIMURA H,et al. The operating experience of the next generation M501G/M701G gas turbine: ASME Paper 2001-GT-0546[R]. New Orleans: ASME,2001.
    [3] 周禹彬,赵旺东,杨锐. 某型高压涡轮级性能试验研究[J]. 燃气涡轮试验与研究,2005,18(4): 20-23,29. ZHOU Yubin,ZHAO Wangdong,YANG Rui. An experimental study on the stage performance of a high-pressure turbine[J]. Gas Turbine Experiment and Research,2005,18(4): 20-23,29. (in Chinese

    ZHOU Yubin, ZHAO Wangdong, YANG Rui. An experimental study on the stage performance of a high-pressure turbine[J]. Gas Turbine Experiment and Research, 2005, 18(4): 20-23, 29. (in Chinese)
    [4] 陈强,郝晟淳,丁健,等. 气冷高压涡轮模拟试验研究[J]. 航空发动机,2019,45(6): 75-80. CHEN Qiang,HAO Shengchun,DING Jian,et al. Simulation test study of air-cooled high-pressure turbine[J]. Aeroengine,2019,45(6): 75-80. (in Chinese

    CHEN Qiang, HAO Shengchun, DING Jian, et al. Simulation test study of air-cooled high-pressure turbine[J]. Aeroengine, 2019, 45(6): 75-80. (in Chinese)
    [5] 刘网扣,范雪飞,蒋俊,等. 某燃气涡轮多级空气透平试验研究[J]. 热能动力工程,2021,36(7): 27-31. LIU Wangkou,FAN Xuefei,JIANG Jun,et al. Experimental research on a gas turbine multi-stage air turbine[J]. Journal of Engineering for Thermal Energy and Power,2021,36(7): 27-31. (in Chinese

    LIU Wangkou, FAN Xuefei, JIANG Jun, et al. Experimental research on a gas turbine multi-stage air turbine[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(7): 27-31. (in Chinese)
    [6] 卫刚,王永明,王松涛,等. 高性能低压涡轮设计与试验[J]. 燃气涡轮试验与研究,2013,26(2): 6-11. WEI Gang,WANG Yongming,WANG Songtao,et al. Design and experiment of a high performance low-pressure turbine[J]. Gas Turbine Experiment and Research,2013,26(2): 6-11. (in Chinese

    WEI Gang, WANG Yongming, WANG Songtao, et al. Design and experiment of a high performance low-pressure turbine[J]. Gas Turbine Experiment and Research, 2013, 26(2): 6-11. (in Chinese)
    [7] 《航空发动机设计手册》编委会. 航空发动机设计手册: 第10册 涡轮[M]. 北京: 航空工业出版社,2001. Editorial Board of aviation Engine Design Manual. Aviation engine design manual: Volume 10 turbine[M]. Beijing: Aviation Industry Press,2001. (in Chinese

    Editorial Board of aviation Engine Design Manual. Aviation engine design manual: Volume 10 turbine[M]. Beijing: Aviation Industry Press, 2001. (in Chinese)
    [8] 中国燃气涡轮研究院,中国航空综合技术研究所. 航空燃气涡轮发动机轴流涡轮气动性能试验方法: HB7081-2012 [S]. 北京: 国家国防科技工业局,2013: 4-5. China Gas Turbine Research Institute,China Aviation Integrated Technology Research Institute. Test method for aerodynamic performance of axial flow turbines in aviation gas turbine engines: HB7081-2012 [S]. Beijing: State Administration of Science,Technology and Industry for National Defense,2013: 4-5. (in Chinese

    China Gas Turbine Research Institute, China Aviation Integrated Technology Research Institute. Test method for aerodynamic performance of axial flow turbines in aviation gas turbine engines: HB7081-2012 [S]. Beijing: State Administration of Science, Technology and Industry for National Defense, 2013: 4-5. (in Chinese)
    [9] 张健,邱绪光. 论涡轮级气动和传热试验的相似准则[J]. 燃气涡轮试验与研究,1995,8(3): 34-38. ZHANG Jian,QIU Xuguang. On similarity criteria of aerodynamic and heat transfer tests of turbine stage[J]. Gas Turbine Experiment and Research,1995,8(3): 34-38. (in Chinese

    ZHANG Jian, QIU Xuguang. On similarity criteria of aerodynamic and heat transfer tests of turbine stage[J]. Gas Turbine Experiment and Research, 1995, 8(3): 34-38. (in Chinese)
    [10] 邹滋祥. 相似理论在叶轮机械模型研究中的应用[M]. 北京: 科学出版社,1984. ZOU Zixiang. Application of similarity theory in turbomachinery model research[M]. Beijing: Science Press,1984. (in Chinese

    ZOU Zixiang. Application of similarity theory in turbomachinery model research[M]. Beijing: Science Press, 1984. (in Chinese)
    [11] 邸亚超,胡应交,张星,等. 涡轮试验准则数对流场相似性的影响[J]. 航空动力学报,2018,33(1): 193-200. DI Yachao,HU Yingjiao,ZHANG Xing,et al. Influence of turbine test criterion parameters on flow similarity[J]. Journal of Aerospace Power,2018,33(1): 193-200. (in Chinese

    DI Yachao, HU Yingjiao, ZHANG Xing, et al. Influence of turbine test criterion parameters on flow similarity[J]. Journal of Aerospace Power, 2018, 33(1): 193-200. (in Chinese)
    [12] EPSTEIN A H,GUENETTE G R,NORTON R J G. The MIT blowdown turbine facility: ASME Paper 84-GT-116 [R]. Amsterdam,Netherlands: ASME,1984.
    [13] ITO E,OKADA I,TSUKAGOSHI K,et al. Development of key technologies for the next generation 1700C-class gas turbine: ASME Paper GT2009-59783 [R]. Orlando,Florida,US: ASME,2009.
    [14] 刘永泉. 国外航空发动机试验设备概览[M]. 北京: 航空工业出版社,2017. LIU Yongquan. Test facilities manual of overseas aviation engine[M]. Beijing: Aviation Industry Press,2017. (in Chinese

    LIU Yongquan. Test facilities manual of overseas aviation engine[M]. Beijing: Aviation Industry Press, 2017. (in Chinese)
    [15] TIMKO L P. Energy efficient engine high pressure turbine component test performance report: NASA CR-16289[R]. West Virginia,US: NASA,1990.
    [16] 邹正平. 航空燃气轮机涡轮气体动力学: 流动机理及气动设计[M]. 上海: 上海交通大学出版社,2014. ZOU Zhengping. Turbine aerodynamics for aviation engine[M]. Shanghai: Shanghai Jiao Tong University Press,2014. (in Chinese

    ZOU Zhengping. Turbine aerodynamics for aviation engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2014. (in Chinese)
    [17] 刘志刚,刘咸定,赵冠春,等. 工质热物理性质计算程序的编制及应用[M]. 北京: 科学出版社,1992. LIU Zhigang,LIU Xianding,ZHAO Guanchun,et al. Compilation and application of calculation program for thermophysical properties of working fluids[M]. Beijing: Science Press,1992. (in Chinese

    LIU Zhigang, LIU Xianding, ZHAO Guanchun, et al. Compilation and application of calculation program for thermophysical properties of working fluids[M]. Beijing: Science Press, 1992. (in Chinese)
    [18] SCHNIEDER M,SOMMER T. Turbines for industrial gas turbine systems[M]//JANSOHN P. Modern gas turbine systems. Cambridge: Woodhead Publishing,2013.
    [19] 清华大学热能工程系动力机械与工程研究所,深圳南山热电股份有限公司. 燃气轮机与燃气-蒸汽联合循环装置[M]. 北京: 中国电力出版社,2007. Institute of Power Machinery and Engineering in Department of Thermal Energy Engineering,Tsinghua University,Shenzhen Nanshan Thermal Power Company Limited. Gas turbine and gas-steam combined cycle device[M]. Beijing: China Electric Power Press,2007. (in Chinese

    Institute of Power Machinery and Engineering in Department of Thermal Energy Engineering, Tsinghua University, Shenzhen Nanshan Thermal Power Company Limited. Gas turbine and gas-steam combined cycle device[M]. Beijing: China Electric Power Press, 2007. (in Chinese)
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  25
  • HTML浏览量:  14
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 网络出版日期:  2024-05-07

目录

    /

    返回文章
    返回