留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于气动声学计算的非均匀网格紧致差分格式

陈志夫 文桂林 王艳广 王明

陈志夫, 文桂林, 王艳广, 王明. 用于气动声学计算的非均匀网格紧致差分格式[J]. 航空动力学报, 2013, 28(1): 180-187.
引用本文: 陈志夫, 文桂林, 王艳广, 王明. 用于气动声学计算的非均匀网格紧致差分格式[J]. 航空动力学报, 2013, 28(1): 180-187.
CHEN Zhi-fu, WEN Gui-lin, WANG Yan-guang, WANG Ming. Compact finite difference schemes on non-uniform meshes for computational aeroacoustics[J]. Journal of Aerospace Power, 2013, 28(1): 180-187.
Citation: CHEN Zhi-fu, WEN Gui-lin, WANG Yan-guang, WANG Ming. Compact finite difference schemes on non-uniform meshes for computational aeroacoustics[J]. Journal of Aerospace Power, 2013, 28(1): 180-187.

用于气动声学计算的非均匀网格紧致差分格式

基金项目: 教育部长江学者与创新团队发展计划(531105050037); 湖南大学汽车车身先进设计制造国家重点实验室自主课题(61075003)

Compact finite difference schemes on non-uniform meshes for computational aeroacoustics

  • 摘要: 为克服传统紧致差分格式在数值求解非均匀网格问题时产生的寄生波,构造了一种新的高精度紧致差分格式.通过泰勒展开分析方法,详细给出了格式系数的通用形式;利用傅里叶分析方法,分析了数值耗散、色散误差.以3对角6阶精度紧致差分格式求解均匀扰动网格问题为例,计算表明:色散值和耗散值随扰动因子的增加而更加趋近于精确值;当扰动因子大于0.213时,格式不稳定,当扰动因子小于等于0.213时,格式渐近稳定;对一维对流波和二维波传播的模拟计算所得数值解与精确解吻合,体现了该格式在求解非均匀网格问题时的优越性.

     

  • [1] TIAN Zhenfu,Yu P X.An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations[J].Journal of Computational Physics,2011,230(17):6404-6419.
    [2] LIU Min,WU Keqi.Aerodynamic noise propagation simulation using immersed boundary method and finite volume optimized prefactored compact scheme[J].Journal of Thermal Science,2008,17(4):361-367.
    [3] Jordan S A.Optimization resolution and application of composite compact finite difference templates[J].Applied Numerical Mathematics,2011,61(1):108-130.
    [4] Lele S K.Compact finite difference schemes with spectral like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
    [5] Tam C K W,Webb J C.Dispersion relation preserving finite difference schemes for computational acoustics[J].Journal of Computational Physics,1993,107(2):262-281.
    [6] Kim J W,Lee D J.Optimized compact finite difference schemes with maximum resolution[J].AIAA Journal,1996,34(5):887-893.
    [7] Kim J W,Lee D J.Implementation of boundary conditions for optimized high-order compact scheme[J].Journal of Computational Acoustics,1997,5(2):177-191.
    [8] Kim J W.Optimized boundary compact finite difference schemes for computational aeroacoustics[J].Journal of Computational Physics,2007,225(1):995-1019.
    [9] Hixon R.Prefactored small stencil compact schemes[J].Journal of Computational Physics,2000,165(2):522- 541.
    [10] Ashcroft G,Zhang X.Optimized prefactored compact schemes[J].Journal of Computational Physics,2003,190(2):459-477.
    [11] 罗柏华,王泽晖,刘宇陆.非等距网格高精度差分方法用于气动声学问题计算[J].上海大学学报:自然科学版,2004,10(1):59-63. LUO Baihua,WANG Zehui,LIU Yulu.High order finite difference scheme based on non uniform meshes for aeroacoustics applications[J].Journal of Shanghai University:Natural Science,2004,10(1):59-63.(in Chinese)
    [12] Tam C K W,Kurbatskii K A.Multi-size mesh multi-time step dispersion relation preserving scheme for multiple scales aeroacoustics problems[J].International Journal of Computational Fluid Dynamics,2003,17(2):119-132.
    [13] Tam C K W,Ju H B,Walker B E.Numerical simulation of a slit resonator in a grazing flow under acoustic excitation[J].Journal of Sound and Vibration,2008,313(3/4/5):449-471.
    [14] Tam C K W,Ju H B.Finite difference computation of acoustic scattering by small surface inhomogeneities and discontinuities[J].Journal of Computational Physics,2009,228(16):5917-5932.
    [15] Cheong C,Lee S.Grid optimized dispersion relation preserving schemes on general geometries for computational aeroacoustics[J].Journal of Computational Physics,2001,174(1):248-276.
    [16] 胡睿,李晓东.非均匀笛卡尔坐标系网格优化频散相关保持格式研究[J].航空动力学报,2005,20(1):1-7. HU Rui,LI Xiaodong.Grid optimized dispersion relation preserving schemes for non-uniform Cartesian grids[J].Journal of Aerospace Power,2005,20(1):1-7.(in Chinese)
    [17] SI Haiqing,WANG Tongguang.Grid optimized upwind dispersion relation preserving scheme on non-uniform Cartesian grids for computational aeroacoustics[J].Aerospace Science and Technology,2008,12(8):608- 617.
    [18] SI Haiqing,WANG Tongguang,CHEN Du.Grid-optimized upwind DRP finite difference scheme on curvilinear grids for computational aeroacoustics[J].Aerospace Science and Technology,2011,15(2):90-102.
    [19] 葛永斌,田振夫,吴文权.三维对流扩散方程非等距网格上的四阶紧致格式及其多重网格方法[J].工程热物理学报,2006,27(5):838-840. GE Yongbin,TIAN Zhenfu,WU Wenquan.Multigrid method and fourth-order compact scheme for 3D convection diffusion equation with unequal mesh-size discretization[J].Journal of Engineering Thermophysics,2006,27(5):838-840.(in Chinese)
    [20] Shukla R K,Zhong X L.Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation[J].Journal of Computational Physics,2005,204(2):404-429.
    [21] Gamet L,Ducros F,Nicoud F,et al.Compact finite difference schemes on non-uniform meshes:application to direct numerical simulations of compressible flows[J].International Journal for Numerical Method in Fluids,1999,29(1):159-191.
    [22] Zhang J.Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization[J].Journal of Computational Physics,2002,179 (1):170-179.
    [23] Hu F Q,Hussaini M Y,Manthey J L.Low dissipation and low dispersion Runge Kutta schemes for computational acoustics[J].Journal of Computational Physics,1996,124(1):177-191.
    [24] Carpenter M H,Gottlieb D,Abarbanel S.The stability of numerical boundary treatments for compact high order finite difference schemes[J].Journal of Computational Physics,1993,108(2):272-295.
    [25] Hardin J C,Ristorcelli J R,Tam C K W.ICASE/LaRC workshop on benchmark problems in computational aeroacoustics .Virginia,USA:Langley Research Centre,1994.
  • 加载中
计量
  • 文章访问数:  1270
  • HTML浏览量:  0
  • PDF量:  2000
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-27
  • 刊出日期:  2013-01-28

目录

    /

    返回文章
    返回