留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驻涡燃烧室发散冷却方案试验

张荣春 樊未军 宋双文 邢菲 孔祥雷

张荣春, 樊未军, 宋双文, 邢菲, 孔祥雷. 驻涡燃烧室发散冷却方案试验[J]. 航空动力学报, 2011, 26(12): 2667-2675.
引用本文: 张荣春, 樊未军, 宋双文, 邢菲, 孔祥雷. 驻涡燃烧室发散冷却方案试验[J]. 航空动力学报, 2011, 26(12): 2667-2675.
ZHANG Rong-chun, FAN Wei-jun, SONG Shuang-wen, XING Fei, KONG Xiang-lei. Experimental investigation on transpiration cooling of trapped vortex combustor[J]. Journal of Aerospace Power, 2011, 26(12): 2667-2675.
Citation: ZHANG Rong-chun, FAN Wei-jun, SONG Shuang-wen, XING Fei, KONG Xiang-lei. Experimental investigation on transpiration cooling of trapped vortex combustor[J]. Journal of Aerospace Power, 2011, 26(12): 2667-2675.

驻涡燃烧室发散冷却方案试验

Experimental investigation on transpiration cooling of trapped vortex combustor

  • 摘要: 设计了两种适用于驻涡燃烧室的发散冷却结构,发散孔的倾角分别为30?和150?,并通过试验研究了两种冷却结构在不同位置处,不同温比及吹风比条件下的冷却效果.试验结果表明,两种冷却结构均具有较高的绝热效率;两种结构的绝热效率随主流温度或吹风比的变化规律相同;凹腔前壁面的绝热效率最高,后壁面的绝热效率最低;在相同试验条件下,倾角150?冷却结构的绝热效率高于倾角30?冷却结构的绝热效率;随着冷却气量的减小,两者之间的差距逐渐增大.最后,通过数值计算方法对试验结果进行了分析.

     

  • [1] Hsu K Y,Goss L P,Trump D D.Performance of a trapped-vortex combustor[R].AIAA 95-0810,1995.
    [2] Roquemore W M,Shousese D T,Burrus D R,et al.Trapped vortex combustor concept for gas turbine engines[R].AIAA 2001-0483,2001.
    [3] Straub D L,Casleton K H,Lewis R E,et al.Assessment of rich-burn,quick-mix,lean-burn trapped vortex combustor for stationary gas turbines[J].ASME J.Eng.Gas Turbines Power,2005,127(1):36-41.
    [4] Brankovic A,Ryder R.Emissions prediction and measurement for liquid fueled TVC combustor with and without water injection[R].AIAA 2005-0215,2005.
    [5] Mehta J M,Shouse D, Cox B,et al.Innovative SiC-SiC ceramic liner for the trapped votex combustor concept[R].AIAA 2004-689,2004.
    [6] Mancilla P C,Charka P,Acharya S,et al.Performance of a trapped vortex spray combustor[R].ASME 2001-GT-0058,2001.
    [7] 张荣春,樊未军,邢菲.涡轮级间单涡燃烧室壁温研究[J].航空动力学报,2010,25(7):1512-1517. ZHANG Rongchun,FAN Weijun,XING Fei.Study of wall temperature on the interstage turbine single vortex combustor[J].Journal of Aerospace Power,2010,25(7):1512-1517.(in Chinese)
    [8] 林宇震.燃烧室多斜孔壁气膜冷却研究[D].北京:北京航空航天大学,1997. LIN Yuzhen.An investigation of the inclined multihole wall film cooling combustion chamber[D].Beijing:Beijing University of Aeronautics and Astronautic,1997.(in Chinese)
    [9] 谢浩.冲击-发散复合冷却流动与传热特性的数值研究[D].南京:南京航空航天大学,2005. XIE Hao.Numerical study on flow and heat transfer characteristics of impingment/effusion cooling mode[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2005.(in Chinese)
    [10] Champion J L,Deshaies B.Experimental investigation of the wall flow and cooling of combustion chamber walls[R].AIAA 95-2498,1995.
    [11] 胡娅萍,吉洪湖.孔阵排列疏密度对致密多孔壁冷却效果的影响[J].推进技术,2005,26(1):28-33. HU Yaping,JI Honghu.Effect of porosity of holes array on cooling effectiveness of effusion cooling[J].Journal of Propulsion Technology,2005,26(1):28-33.(in Chinese)
    [12] 胡娅萍,吉洪湖.致密多孔壁冷流入射角对冷却效果影响的数值研究[J].航空动力学报,2005,20(1):116-119. HU Yaping,JI Honghu.Numerical study of the blowing angle effect on effusion cooling effectiveness[J].Journal of Aerospace Power,2005,20(1):116-119.(in Chinese)
    [13] 宋波,林宇震,刘高恩,等.不同排列方式多斜孔壁气膜冷却绝热温比研究[J].航空动力学报,1999,14(1):91-94. SONG Bo,LIN Yuzhen,LIU Gaoen,et al.An investigation on film cooling effectiveness of inclined-mutihole walls with different patterns[J].Journal of Aerospace Power,1999,14(1):91-94.(in Chinese)
    [14] 葛绍岩,刘登瀛,徐靖中,等.气膜冷却[M].北京:科学出版社.
  • 加载中
计量
  • 文章访问数:  1665
  • HTML浏览量:  0
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-21
  • 修回日期:  2011-07-19
  • 刊出日期:  2011-12-28

目录

    /

    返回文章
    返回