留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于筏化的镍基单晶合金高温蠕变模型

王佰智 付强 于洪飞

王佰智, 付强, 于洪飞. 基于筏化的镍基单晶合金高温蠕变模型[J]. 航空动力学报, 2016, 31(10): 2325-2330. doi: 10.13224/j.cnki.jasp.2016.10.003
引用本文: 王佰智, 付强, 于洪飞. 基于筏化的镍基单晶合金高温蠕变模型[J]. 航空动力学报, 2016, 31(10): 2325-2330. doi: 10.13224/j.cnki.jasp.2016.10.003
WANG Bai-zhi, FU Qiang, YU Hong-fei. A creep model of nickel based single crystal superalloy at high temperature based on rafting mechanism[J]. Journal of Aerospace Power, 2016, 31(10): 2325-2330. doi: 10.13224/j.cnki.jasp.2016.10.003
Citation: WANG Bai-zhi, FU Qiang, YU Hong-fei. A creep model of nickel based single crystal superalloy at high temperature based on rafting mechanism[J]. Journal of Aerospace Power, 2016, 31(10): 2325-2330. doi: 10.13224/j.cnki.jasp.2016.10.003

基于筏化的镍基单晶合金高温蠕变模型

doi: 10.13224/j.cnki.jasp.2016.10.003
详细信息
    作者简介:

    王佰智(1985-),男,山东济南人,工程师,博士,主要从事航空发动机结构强度研究.

  • 中图分类号: V231.3

A creep model of nickel based single crystal superalloy at high temperature based on rafting mechanism

  • 摘要: 采用应力法以及界面能法对不同取向的镍基单晶合金在950℃下的筏化类型进行了预测.上述两种方法的筏化预测结果一致,[001]取向为N型筏化,[011]取向为P型筏化,[111]取向不筏化.进一步,根据筏化预测结果以及晶体滑移理论,结合Kachanov-Robotnov(K-R)损伤演化公式,建立了一个镍基单晶合金蠕变模型,采用该模型并结合商用有限元软件Abaqus的用户材料子程序(UMAT)二次开发接口,对[001],[011]和[111]取向下的CMSX-4镍基单晶合金,在950℃,180~450MPa应力条件下的蠕变变形行为进行了模拟.该模型能够准确预测镍基单晶合金的筏化类型以及滑移系开动规律,更加符合材料的蠕变变形物理机制,因此模型可以对镍基单晶合金的高温蠕变曲线的第2,3阶段进行很好的模拟,并得到了试验的验证.

     

  • [1] Kondo Y,Kitazaki N,Namekata J,et al.Effect of morphology of γ' phase on creep resistance of a single crystal nickel-based superalloy,CMSX-4[C]//Proceedings of Superalloys 1996.Warrendale:The Minerals,Metals and Meterials Society,1996:297-304.
    [2] SHUI Li,JIN Tao,TIAN Sugui,et al.Influence of precipitate morphology on tensile creep of a single crystal nickel-base superalloy[J].Materials Science and Engineering:A,2007,454/455:461-466.
    [3] Socrate S,Parks D M.Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys[J].Acta Metallurgica et Materialia,1993,41(7):2185-2209.
    [4] Arrell D J,Vallés J L.Rafting prediction criterion for superalloys under a multiaxial stress[J].Scripta Matrialia,1996,35(6):727-732.
    [5] Buffiere J Y,Ignat M.A dislocation based criterion for the raft formation in nickel-based superalloys single crystals[J].Acta Metallurgica et Materialia,1995,43(5):1791-1797.
    [6] Tian S G,Zhang S,Liang F S,et al.Microstructure evolution and analysis of a single crystal nickel-based superalloy during compressive creep[J].Materials Science and Engineering:A,2011,528(15):4988-4993.
    [7] 白露,杨晓光,石多奇,等.镍基单晶合金蠕变研究:基于晶体塑性的蠕变建模[J].航空动力学报,2009,24(9):2001-2006. BAI Lu,YANG Xiaoguang,SHI Duoqi,et al.Crystal-plasticity-based creep modelins for Ni-based single crystal superalloy[J].Journal of Aerospace Power,2009,24(9):2001-2006.(in Chinese)
    [8] Reed R C,Matan N,Cox D C,et al.,Creep of CMSX-4 superalloy single crystals:effects of rafting at high temperature[J].Acta Materialia,1999,47(12):3367-3381.
    [9] 艾兴,高行山,温志勋,等.DD6镍基单晶合金气膜孔薄壁平板高温蠕变性能[J].航空动力学报,2014,29(5):1197-1204. AI Xing,GAO Hangshan,WEN Zhixun,et al.Creep behavior of thin-walled plate with cooling holes of nickel-based single crystal superalloy DD6 under high temperature[J].Journal of Aerospace Power,2014,29(5):1197-1204.(in Chinese)
    [10] Matan N,Cox D C,Rae C M F,et al.On the kinetics of rafting in CMSX-4 superalloy single crystals[J].Acta Materialia,1999,47(7):2031-2045.
    [11] Ichitsubo T,Koumoto D,Hirao M,et al.Rafting mechanism for Ni-base superalloy under external stress:elastic or elastic-plastic phenomena[J].Acta Materialia,2003,51(14):4033-4044.
    [12] Kamaraj M,Serin K,Kolbe M,et al.Influence of stress state on the kinetics of γ channel widening during high temperature and low stress creep of the single crystal superalloy CMSX-4[J].Materials Science and Engineering:A,2001,319/320/321:796-799.
    [13] Fan Y N,Shi H J,Qiu W H.Constitutive modeling of creep behavior in single crystal sueralloys:effect of rafting at high temperatures[J].Materials Science and Engineering:A,2015,644:225-233.
    [14] Pyczak F,Devrient B,Mughrabi H.The effects of different alloying elements on the thermal expansion coefficients,lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction[C]//Proceedings of Superalloys 2004.Warrendale:The Minerals,Metals and Meterials Society,2004:827-836.
    [15] 岳珠峰,于庆民,温志勋,等.镍基单晶涡轮叶片结构强度设计[M].北京:科学出版社,2008.
    [16] 曹娟,王延荣,石多奇.镍基单晶高温合金蠕变筏化模型研究[J].航空动力学报,2009,24(8):1691-1698. CAO Juan,WANG Yanrong,SHI Duoqi.A rafting model for creep of Ni base single crystal at high temperature based on microstructure cell[J].Journal of Aerospace Power,2009,24(8):1691-1698.(in Chinese)
    [17] MacLachlan D W,Wright L W,Gunturi S,et al.Modelling the anisotropic and biaxial creep behaviour of Ni-base single crystal superalloys CMSX-4 and SRR99 at 1223K[C]//Proceedings of Superalloys 2000.Warrendale:The Minerals,Metals and Meterials Society,2000:357-366.
    [18] Jácome L A,Nörtershäuser P,Heyer J K,et al,High-temperature and low-stress creep anisotropy of single-crystal superalloys[J].Acta Materialia,2013,61(8):2926-2943.
    [19] MacLachlan D W,Wright L W,Gunturi S,et al.Constitutive modelling of anisotropic creep deformation in single crystal blade alloys SRR99 and CMSX-4[J].International Journal of Plasticity,2001,17(4):441-467.
  • 加载中
计量
  • 文章访问数:  951
  • HTML浏览量:  5
  • PDF量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-16
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回