留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

New constitutive relation for eddy viscosity models

JIANG Li-jun GAO Ge

JIANG Li-jun, GAO Ge. New constitutive relation for eddy viscosity models[J]. 航空动力学报, 2016, 31(10): 2485-2492. doi: 10.13224/j.cnki.jasp.2016.10.023
引用本文: JIANG Li-jun, GAO Ge. New constitutive relation for eddy viscosity models[J]. 航空动力学报, 2016, 31(10): 2485-2492. doi: 10.13224/j.cnki.jasp.2016.10.023
JIANG Li-jun, GAO Ge. New constitutive relation for eddy viscosity models[J]. Journal of Aerospace Power, 2016, 31(10): 2485-2492. doi: 10.13224/j.cnki.jasp.2016.10.023
Citation: JIANG Li-jun, GAO Ge. New constitutive relation for eddy viscosity models[J]. Journal of Aerospace Power, 2016, 31(10): 2485-2492. doi: 10.13224/j.cnki.jasp.2016.10.023

New constitutive relation for eddy viscosity models

doi: 10.13224/j.cnki.jasp.2016.10.023
基金项目: 

China Academy of Aeronautics Propulsion Innovation Fund

详细信息
  • 中图分类号: V231

New constitutive relation for eddy viscosity models

Funds: 

China Academy of Aeronautics Propulsion Innovation Fund

  • 摘要: A new turbulent constitutive relation was directly derived from Boussinesq's hypothesis and mixing length theory, and then implemented in the standard k-ε model. The performance of this constitutive relation was validated in zero pressure gradient flat-plate boundary layer flow, fully-developed turbulent channel flow and separated flow in a plane asymmetric diffuser. The investigation demonstrated that, this new constitutive relation gave very accurate results in the former two basic cases and provided significant improvement in prediction of separated and reattachment points in the plane asymmetric diffuser. Separation and reattachment points at x/H=7.5 and 29 were calculated accurately in comparison to experimental results, and the static pressure coefficient of 0.82 was very close to large eddy simulation calculation. These results are very encouraging but further verification and extensive application of the new constitutive relation to other two-equation eddy viscosity model are needed.

     

  • [1] Rivlin R S.The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids[J].Quarterly Applied Mathematics,1957,15:212-215.
    [2] Lumley J L.Toward a turbulent constitutive relation[J].Journal of Fluid Mechanics,1970,41(2):413-434.
    [3] Pope S B.A more general effective-viscosity hypothesis[J].Journal of Fluid Mechanics,1975,72(2):331-340.
    [4] Launder B E,Reece G J,Rodi W.Progress in the development of Reynolds stress turbulence closure[J].Journal of Fluid Mechanics,1975,68(3):537-566.
    [5] Shih T H,Zhu J,Lumley J L.A new Reynolds stress algebraic equation model[J].Computer Methods in Applied Mechanics and Engineering,1995,125(1):287-302.
    [6] Yoshizawa A.Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation[J].Physics of Fluids,1984,27(6):1377-1387.
    [7] Rubinstein R,Barton J M.Nonlinear Reynolds stress models and the renormalization group[J].Physics of Fluids A:Fluid Dynamics,1990,2(8):1472-1476.
    [8] Speziale C G.On nonlinear k-l and k-ε models of turbulence[J].Journal of Fluid Mechanics,1987,178:459-475.
    [9] Craft T J,Launder B E,Suga K.Development and application of a cubic eddy-viscosity model of turbulence[J].International Journal of Heat and Fluid Flow,1996,17(2):108-115.
    [10] Apsley D D,Leschziner M A.A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows[J].International Journal of Heat and Fluid Flow,1998,19(3):209-222.
    [11] Huang Y N,Rajagopal K R.On a generalized nonlinear k-ε model for turbulence that models relaxation effects[J].Theoretical and Computational Fluid Dynamics,1996,8(4):275-288.
    [12] Menter F,Kuntz M,Bender R.A scale-adaptive simulation model for turbulent flow predictions[R].AIAA-2003-0767,2003.
    [13] Rotta J C.Turbulente strömumgen[M].Stuttgart:BG Teubner,1972.
    [14] Menter F R,Egorov Y.The scale-adaptive simulation method for unsteady turbulent flow predictions:Part 1 theory and model description[J].Flow,Turbulence and Combustion,2010,85(1):113-138.
    [15] Wilcox D.Turbulence modeling for CFD[M].La Canada,CA:DCW Industries Inc.,1993.
    [16] Launder B E,Spalding D B.Mathematical models of turbulence[M].London:Academic Press,1972.
    [17] Weller H G,Tabor G,Jasak H,et al.A tensorial approach to computational continuum mechanics using object-oriented techniques[J].Computers in Physics,1998,12(6):620-631.
    [18] Wieghardt K,Tillman W.On the turbulent friction layer for rising pressure[R].NACA TM-1314,1951.
    [19] Wei T,Willmarth W W.Reynolds-number effects on the structure of a turbulent channel flow[J].Journal of Fluid Mechanics,1989,204(4):57-95.
    [20] Buice C U.Experimental investigation of flow through an asymmetric plane diffuser[D].Stanford,US:Stanford University,1997.
    [21] Apsley D D,Leschziner M A.Advanced turbulence modelling of separated flow in a diffuser[J].Flow,Turbulence and Combustion,2000,63(1):81-112.
    [22] Buice C.Experimental investigation of flow through an asymmetric plane diffuser[D].Stanford,US:Stanford University,1997.
  • 加载中
计量
  • 文章访问数:  743
  • HTML浏览量:  2
  • PDF量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 刊出日期:  2016-10-28

目录

    /

    返回文章
    返回