留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉动背压离心压气机动态特性及稳定性

舒梦影 杨名洋 王兴宸 邓康耀

舒梦影,杨名洋,王兴宸,等.脉动背压离心压气机动态特性及稳定性[J].航空动力学报,2022,37(8):1740‑1748. doi: 10.13224/j.cnki.jasp.20210058
引用本文: 舒梦影,杨名洋,王兴宸,等.脉动背压离心压气机动态特性及稳定性[J].航空动力学报,2022,37(8):1740‑1748. doi: 10.13224/j.cnki.jasp.20210058
SHU Mengying,YANG Mingyang,WANG Xingchen,et al.Compressor transient responses and stability at pulsating backpressure conditions[J].Journal of Aerospace Power,2022,37(8):1740‑1748. doi: 10.13224/j.cnki.jasp.20210058
Citation: SHU Mengying,YANG Mingyang,WANG Xingchen,et al.Compressor transient responses and stability at pulsating backpressure conditions[J].Journal of Aerospace Power,2022,37(8):1740‑1748. doi: 10.13224/j.cnki.jasp.20210058

脉动背压离心压气机动态特性及稳定性

doi: 10.13224/j.cnki.jasp.20210058
基金项目: 

国家自然科学基金 52076130

详细信息
    作者简介:

    舒梦影(1995-),女,博士生,主要从事叶轮机械气动热力学研究。

  • 中图分类号: V23

Compressor transient responses and stability at pulsating backpressure conditions

  • 摘要:

    试验研究了脉动背压对离心压气机动态响应及喘振特性的影响规律。结果表明:脉动背压条件时压气机性能存在明显非定常特征,高频大幅脉动背压和陡峭的压比流量特性均可强化该非定常特征。基于试验结果,提出了脉动背压压气机非定常性能与脉冲特性及运行工况的关联模型。脉动背压导致压气机喘振边界左移,稳定运行范围最高拓宽12.3%。压气机向小流量工况趋近时,脉动背压引起的流场振荡减弱,但喘振所致的流场振荡逐步强化,致使流场振荡强度呈V型变化特征,表明了脉动背压与压气机气动稳定性之间存在耦合关系。研究探明了脉动背压条件对压气机动态响应和喘振特性的影响规律,对帮助真实运行环境压气机设计理论的发展具有重要意义。

     

  • 图 2  离心压气机试验平台

    Figure 2.  Test rig for centrifugal compressor

    图 7  压气机性能非定常性

    Figure 7.  Unsteadiness of compressor performance

    图 8  迟滞环面积与压气机响应非定常性关系

    Figure 8.  Correlation between area of hysteresis loop and compressor unsteadiness

    图 9  脉动背压对压气机瞬态响应影响规律

    Figure 9.  Influence of pulsating backpressure on compressor transient responses

    图 10  脉动背压工况压气机喘振边界

    Figure 10.  Surge limit at pulsating backpressure conditions

    表  1  离心压气机几何参数

    Table  1.   Geometrical parameters of the centrifugal compressor

    参数名称参数值
    叶片数量7+7
    叶轮入口叶尖直径/mm70.0
    叶轮出口直径/mm100.0
    叶轮出口宽度/mm5.3
    扩压器出口直径/mm120.0
    扩压器出口宽度/mm5.3
    蜗壳喉口面径比/mm27.9
    下载: 导出CSV
  • [1] KRAIN H.Review of centrifugal compressor's application and development[J].Journal of Turbomachinery,2005,127(1):25‑34.
    [2] 徐斌,尧辉,薄东,等.高空活塞发动机2级涡轮增压系统匹配分析[J].航空发动机,2010,36(1):10⁃13.

    XU Bin,YAO Hui,BO Dong,et al.Matching analysis of two stage turbocharging system of high altitude piston engine[J].Aeroengine,2010,36(1):10⁃13.(in Chinese)
    [3] SHIH W P,LEE J G,SANTAVICCA D A.Stability and emissions characteristics of a lean premixed gas turbine combustor[J].Symposium (International) on Combustion,1996,26(2):2771⁃2778.
    [4] 王凌羿,郑龙席,贾胜锡.离心压气机与脉冲爆震燃烧室共同工作分析[J].航空动力学报,2020,35(4):704⁃710.

    WANG Lingyi,ZHENG Longxi,JIA Shengxi.Analysis on interaction between centrifugal compressor and pulse detonation combustor[J].Journal of Aerospace Power,2020,35(4):704⁃710.(in Chinese)
    [5] 陆梅.废气涡轮增压器工作特性及高原适应性分析[J].公路与汽运,2004(3):1⁃4.
    [6] 刘峥,张扬军.内燃机一维非定常流动[M].北京:清华大学出版社,2007.
    [7] MARELLI S,CAPOBIANCO M.Experimental investigation under unsteady flow conditions on turbocharger compressors for automobile gasoline engines[C]∥10th International Conference on Turbochargers and Turbocharging.London:Elsevier Science and Technology,2012:219⁃229
    [8] MARELLI S,CAPOBIANCO M,ZAMBONI G.Pulsating flow performance of a turbocharger compressor for automobile application[J].International Journal of Heat and Fluid Flow,2014,45:158⁃165.
    [9] BARRERA⁃MEDRANO M E,MARTINEZ⁃BOTAS R,TOMITA I,et al.On the effect of engine pulsations on the performance of a turbocharger centrifugal compressor[J].Journal of Engineering for Gas Turbines and Power,2019,141(8):081001.1⁃081001.11.
    [10] BARRERA⁃MEDRANO M E,MARTINEZ⁃BOTAS R,TOMITA I,et al.Effect of exit pressure pulsation on the performance and stability limit of a turbocharger centrifugal compressor[J].Journal of Engineering for Gas Turbines and Power,2017,139(5):052601.1⁃052601.9.
    [11] BENSON R,WHITFIELD A.An experimental investigation of the non‑steady flow characteristics of a centrifugal compressor[J].Proceedings of the Institution of Mechanical Engineers,1965,180(1):641⁃672.
    [12] GALINDO J,CLIMENT H,GUARDIOLA C,et al.On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines[J].Experimental Thermal and Fluid Science,1009,33(8):1163⁃1171.
    [13] COTUGNO A,WALTER S.Fundamentals of hot wire anemometry[M].Cambridge,USA:Cambridge University Press,1986.
    [14] BALL S J,ASHFORTH⁃FROST S,JAMBUNATHAN K,et al.Appraisal of a hot⁃wire temperature compensation technique for velocity measurements in non⁃isothermal flows[J].International Journal of Heat and Mass Transfer,1999,42(16):3097⁃3102.
    [15] SZYMKO S,MARTINEZ⁃BOTAS R F,PULLEN K R.Experimental evaluation of turbocharger turbine performance under pulsating flow conditions[R].ASME Paper 2005⁃GT⁃68878,2005.
    [16] CAPOBIANCO M,MARELLI S.Experimental analysis of unsteady flow performance in an automotive turbocharger turbine fitted with a waste⁃gate valve[J].Journal of Automobile Engineering,2011,255(8):1087⁃1097.
    [17] CAO Teng,XU Liping,YANG Mingyang,et al.Radial turbine rotor response to pulsating inlet flows[J].Journal of Turbomachinery,2014,136(7):071003.1⁃071003.10.
    [18] COSTALL A,SZYMKO S,MARTINEZ⁃BOTAS R F,et al.Assessment of unsteady behavior in turbocharger turbines[C]∥ASME Turbo Expo 2006:Power for Land,Sea,and Air.Barcelona:American Society of Mechanical Engineers Digital Collection,2006:1023⁃1038.
    [19] YANG Mingyang,DENG Kangyao,MARTINEZ⁃BOTAS R F,et al.An investigation on unsteadiness of a mixed⁃flow turbine under pulsating conditions[J].Energy Conversion and Management,2016,110(7):51⁃58.
    [20] CUMPSTY N A.Compressor aerodynamics[M].London:Longman Scientific and Technical,1989.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  48
  • HTML浏览量:  15
  • PDF量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05

目录

    /

    返回文章
    返回