Compressor transient responses and stability at pulsating backpressure conditions
-
摘要:
试验研究了脉动背压对离心压气机动态响应及喘振特性的影响规律。结果表明:脉动背压条件时压气机性能存在明显非定常特征,高频大幅脉动背压和陡峭的压比流量特性均可强化该非定常特征。基于试验结果,提出了脉动背压压气机非定常性能与脉冲特性及运行工况的关联模型。脉动背压导致压气机喘振边界左移,稳定运行范围最高拓宽12.3%。压气机向小流量工况趋近时,脉动背压引起的流场振荡减弱,但喘振所致的流场振荡逐步强化,致使流场振荡强度呈V型变化特征,表明了脉动背压与压气机气动稳定性之间存在耦合关系。研究探明了脉动背压条件对压气机动态响应和喘振特性的影响规律,对帮助真实运行环境压气机设计理论的发展具有重要意义。
Abstract:The influence of pulsating backpressure on compressor transient responses and surge characteristics was investigated experimentally.The results showed that the compressor responses were highly unsteady at pulsating conditions.The unsteadiness of compressor performance was stronger at high frequency,high magnitude pulsating conditions,or steep pressure ratio‑flow rate characteristic curves.A correlation among compressor unsteadiness,pulsating strength,and operating condition was proposed based on the results.Surge was postponed at pulsating conditions,with improvement by 12.3% of compressor stable operating range.The strength of fluctuation caused by pulsating decreased with the reduction of flow rate,while the fluctuation due to aerodynamic instability increased.The V‑shaped trend of the strength of flow fluctuation was caused by the interaction between pulsating backpressure and compressor instability.The influence of pulsating backpressure on dynamic response and surge characteristics of compressor was studied.This study can be helpful to improve compressor design methodology at unsteady operating conditions.
-
Key words:
- centrifugal compressor /
- pulsating backpressure /
- flowfield measurement /
- transient responses /
- surge
-
表 1 离心压气机几何参数
Table 1. Geometrical parameters of the centrifugal compressor
参数名称 参数值 叶片数量 7+7 叶轮入口叶尖直径/mm 70.0 叶轮出口直径/mm 100.0 叶轮出口宽度/mm 5.3 扩压器出口直径/mm 120.0 扩压器出口宽度/mm 5.3 蜗壳喉口面径比/mm 27.9 -
[1] KRAIN H.Review of centrifugal compressor's application and development[J].Journal of Turbomachinery,2005,127(1):25‑34. [2] 徐斌,尧辉,薄东,等.高空活塞发动机2级涡轮增压系统匹配分析[J].航空发动机,2010,36(1):10⁃13.XU Bin,YAO Hui,BO Dong,et al.Matching analysis of two stage turbocharging system of high altitude piston engine[J].Aeroengine,2010,36(1):10⁃13.(in Chinese) [3] SHIH W P,LEE J G,SANTAVICCA D A.Stability and emissions characteristics of a lean premixed gas turbine combustor[J].Symposium (International) on Combustion,1996,26(2):2771⁃2778. [4] 王凌羿,郑龙席,贾胜锡.离心压气机与脉冲爆震燃烧室共同工作分析[J].航空动力学报,2020,35(4):704⁃710.WANG Lingyi,ZHENG Longxi,JIA Shengxi.Analysis on interaction between centrifugal compressor and pulse detonation combustor[J].Journal of Aerospace Power,2020,35(4):704⁃710.(in Chinese) [5] 陆梅.废气涡轮增压器工作特性及高原适应性分析[J].公路与汽运,2004(3):1⁃4. [6] 刘峥,张扬军.内燃机一维非定常流动[M].北京:清华大学出版社,2007. [7] MARELLI S,CAPOBIANCO M.Experimental investigation under unsteady flow conditions on turbocharger compressors for automobile gasoline engines[C]∥10th International Conference on Turbochargers and Turbocharging.London:Elsevier Science and Technology,2012:219⁃229 [8] MARELLI S,CAPOBIANCO M,ZAMBONI G.Pulsating flow performance of a turbocharger compressor for automobile application[J].International Journal of Heat and Fluid Flow,2014,45:158⁃165. [9] BARRERA⁃MEDRANO M E,MARTINEZ⁃BOTAS R,TOMITA I,et al.On the effect of engine pulsations on the performance of a turbocharger centrifugal compressor[J].Journal of Engineering for Gas Turbines and Power,2019,141(8):081001.1⁃081001.11. [10] BARRERA⁃MEDRANO M E,MARTINEZ⁃BOTAS R,TOMITA I,et al.Effect of exit pressure pulsation on the performance and stability limit of a turbocharger centrifugal compressor[J].Journal of Engineering for Gas Turbines and Power,2017,139(5):052601.1⁃052601.9. [11] BENSON R,WHITFIELD A.An experimental investigation of the non‑steady flow characteristics of a centrifugal compressor[J].Proceedings of the Institution of Mechanical Engineers,1965,180(1):641⁃672. [12] GALINDO J,CLIMENT H,GUARDIOLA C,et al.On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines[J].Experimental Thermal and Fluid Science,1009,33(8):1163⁃1171. [13] COTUGNO A,WALTER S.Fundamentals of hot wire anemometry[M].Cambridge,USA:Cambridge University Press,1986. [14] BALL S J,ASHFORTH⁃FROST S,JAMBUNATHAN K,et al.Appraisal of a hot⁃wire temperature compensation technique for velocity measurements in non⁃isothermal flows[J].International Journal of Heat and Mass Transfer,1999,42(16):3097⁃3102. [15] SZYMKO S,MARTINEZ⁃BOTAS R F,PULLEN K R.Experimental evaluation of turbocharger turbine performance under pulsating flow conditions[R].ASME Paper 2005⁃GT⁃68878,2005. [16] CAPOBIANCO M,MARELLI S.Experimental analysis of unsteady flow performance in an automotive turbocharger turbine fitted with a waste⁃gate valve[J].Journal of Automobile Engineering,2011,255(8):1087⁃1097. [17] CAO Teng,XU Liping,YANG Mingyang,et al.Radial turbine rotor response to pulsating inlet flows[J].Journal of Turbomachinery,2014,136(7):071003.1⁃071003.10. [18] COSTALL A,SZYMKO S,MARTINEZ⁃BOTAS R F,et al.Assessment of unsteady behavior in turbocharger turbines[C]∥ASME Turbo Expo 2006:Power for Land,Sea,and Air.Barcelona:American Society of Mechanical Engineers Digital Collection,2006:1023⁃1038. [19] YANG Mingyang,DENG Kangyao,MARTINEZ⁃BOTAS R F,et al.An investigation on unsteadiness of a mixed⁃flow turbine under pulsating conditions[J].Energy Conversion and Management,2016,110(7):51⁃58. [20] CUMPSTY N A.Compressor aerodynamics[M].London:Longman Scientific and Technical,1989. -