留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真实气体效应对等离子体鞘套及电磁参数的影响

李俊红 吕俊明 苗文博 程晓丽

李俊红,吕俊明,苗文博,等.真实气体效应对等离子体鞘套及电磁参数的影响[J].航空动力学报,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124
引用本文: 李俊红,吕俊明,苗文博,等.真实气体效应对等离子体鞘套及电磁参数的影响[J].航空动力学报,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124
LI Junhong,LÜ Junming,MIAO Wenbo,et al.Real gas effects on the plasma sheath and the electromagnetic parameters of the reentry vehicle[J].Journal of Aerospace Power,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124
Citation: LI Junhong,LÜ Junming,MIAO Wenbo,et al.Real gas effects on the plasma sheath and the electromagnetic parameters of the reentry vehicle[J].Journal of Aerospace Power,2022,37(8):1579‑1586. doi: 10.13224/j.cnki.jasp.20210124

真实气体效应对等离子体鞘套及电磁参数的影响

doi: 10.13224/j.cnki.jasp.20210124
基金项目: 

装备预先研究项目基金 6140206040215

详细信息
    作者简介:

    李俊红(1978-),女,高级工程师,博士,主要从事高温真实气体效应和超声速燃烧数值模拟研究。

  • 中图分类号: V411.3

Real gas effects on the plasma sheath and the electromagnetic parameters of the reentry vehicle

  • 摘要:

    针对高速飞行器高超声速飞行环境,建立了热化学非平衡流动数值模拟技术,并对计算方法的可靠性进行了验证,接着开展了真实气体效应对飞行器等离子体鞘套及其电磁参数的影响规律分析。结果表明:飞行器物面中心线等离子体密度峰值与飞行试验符合良好;对于碰撞频率,沿滞止流线,双温模型以及Park反应模型对等离子体碰撞频率的影响趋势是一致的;对于相对介电常数,除激波附近,流场其他区域的实部接近1,激波附近小于1,虚部沿滞止流线逐渐升高;双温模型以及Park反应模型对相对介电常数实部和虚部的影响趋势是一致的。

     

  • 图 1  RAM C⁃Ⅱ 模型

    Figure 1.  RAM C⁃Ⅱ model

    图 2  RAM C⁃Ⅱ 计算网格

    Figure 2.  Sketch of the RAM C⁃Ⅱ computed grid

    图 3  RAM C⁃Ⅱ 对称面电子密度峰值计算结果与飞行结果的对比

    Figure 3.  Electron density peak comparison between the computation result and the flight test data along the RAM C⁃Ⅱ symmetry plane

    图 4  RAM C⁃Ⅱ对称面等离子体密度等值线分布(完全催化壁面、单温模型)

    Figure 4.  Plasma density contour on the RAM C⁃Ⅱ symmetry plane (full catalytic wall condition,one⁃temperature model)

    图 5  热力学模型对RAM C⁃Ⅱ头部滞止线上温度的影响

    Figure 5.  Effect of thermal models on the head temperature distribution along the RAM C⁃Ⅱ head stagnation line

    图 6  热力学模型对RAM C⁃Ⅱ 头部滞止线上等离子体密度的影响

    Figure 6.  Effect of thermodynamic models on the plasma density along the RAM C⁃Ⅱ head stagnation line

    图 7  热力学模型对RAM C⁃Ⅱ对称面等离子体峰值密度的影响

    Figure 7.  Effect of thermodynamic models on the plasma density peak on the RAM C⁃Ⅱ symmetry plane

    图 8  化学反应模型对RAM C⁃Ⅱ头部滞止线上温度的影响

    Figure 8.  Effect of chemical reaction models on the temperature along the RAM C⁃Ⅱ head stagnation line

    图 9  化学反应模型对RAM C⁃Ⅱ头部滞止线上等离子体密度的影响

    Figure 9.  Effect of chemical reaction models on the plasma density along the RAM C⁃Ⅱ head stagnation line

    图 10  化学反应组分对RAM C⁃Ⅱ对称面等离子体密度峰值的影响

    Figure 10.  Effect of chemical reaction species on the plasma density peak on the RAM C⁃Ⅱ symmetry line

    图 11  化学反应模型对RAM C⁃Ⅱ对称面等离子体密度峰值的影响

    Figure 11.  Effect of chemical reaction models on the plasma density peak on the RAM C⁃Ⅱ symmetry plane

    图 12  RAM C⁃Ⅱ对称面等离子体鞘套碰撞频率等值线分布(完全催化壁面、单温模型)

    Figure 12.  Collision frequency contour distribution of the plasma sheath on the RAM C⁃Ⅱ symmetry plane (full catalytic wall condition and one⁃temperature model)

    图 13  热力学模型对RAM C⁃Ⅱ头部滞止线上等离子体鞘套碰撞频率的影响

    Figure 13.  Effect of thermodynamic models on the plasma sheath collision frequency along the RAM C⁃Ⅱ head stagnation line

    图 16  化学反应模型对RAM C⁃Ⅱ头部滞止线上等离子体鞘套碰撞频率的影响

    Figure 16.  Effect of chemical reaction models on the plasma sheath collision frequency along the RAM C⁃Ⅱ head stagnation line

  • [1] 中国人民解放军总装备部军事训练教材编辑工作委员会.再入物理「M].北京:国防工业出版社,2005.
    [2] 姚博.高速飞行器等离子鞘套信道统计模型研究[D].西安:西安电子科技大学,2019.

    YAO Bo.A stochastic channel model of plasma sheath for hypersonic vehicle in near space[D].Xi'an:Xidian University,2019.(in Chinese)
    [3] CURTIS J T,TRAMEL R W.The AEDC thermochemical non⁃equilibrium package⁃theory and use[R].AEDC⁃TR⁃93⁃20,1994.
    [4] AKEY N D,CROSS A E.Radio blackout alleviation and plasma diagnostic results from a 25,000 foot per second blunt⁃body reentry[R].NASA TN D⁃5615,1970.
    [5] GRANTHAM W L.Flight results of a 25,000 foot per second re⁃entry experiment using microwave reflectometers to measure plasma electron density and standoff distance[R].NASA TND⁃6062,1970.
    [6] WEAVER W L,BOWEN J T.trajectory Entry,entry,environment,and analysis of spacecraft motion for the RAM C⁃Ⅲ flight experiment[R].NASA TM X⁃2562,1972.
    [7] JONES W L,CROSS A E.Electrostatic⁃probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second[R].NASA TN D⁃6617,1972.
    [8] WEAVER W L.Multiple⁃orifice liquid injection into hypersonic air streams and application to RAM C⁃Ⅲ flight[R].NASA TM X⁃2486,1972.
    [9] 曾啸风.再入飞行物及等离子体鞘套的建模与散射分析[D].成都:电子科技大学,2018.

    ZENG Xiaofeng.Modeling and scattering analysis of reentry and plasma sheath[D].Chengdu:University of Electronic Science and Technology of China,2018.(in Chinese)
    [10] 孟贵平.再入体的电磁散射特性分析及算法研究[D].南京:南京大学,2019.

    MENG Guiping.Re‑entry body electromagnetic scattering characteristics analysis and algorithm research[D].Nanjing:Nanjing University,2019.(in Chinese)
    [11] 王艳薇.高超飞行器鞘套电子密度与碰撞的数值研究[D].哈尔滨:哈尔滨工业大学,2019.

    WANG Yanwei.Numerical study on electron density and collision of sheath of hypersonic vehicle[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)
    [12] 欧阳水吾.高温非平衡空气绕流[M].北京:国防工业出版社,2001.
    [13] GNOFFO P A,GUPTA R N,SHINN J L.Conservation equations and physical models for hypersonic air flows in thermal and chemical non⁃equilibrium[R].NASA TP⁃2867,1989.
    [14] 周靖云.高超声速热化学非平衡等离子体流场数值模拟[D].北京:中国航天空气动力技术研究院,2020.

    ZHOU Jingyun.Numerical simulation of thermochemical non‑equilibrium hypersonic plasma flow[D].Beijing:China Academy of Aerospace Aerodynamics,2020.(in Chinese)
    [15] PARK C.Assessment of two temperature kinetic model for ionizing air[R].AIAA⁃87⁃1574,1987.
    [16] MIAO W B,CHENU X L,AI B C.Flow configuration effects on mass diffusion part of heat flux in thermal⁃chemical flows[J].Acta Aerodynamica Sinica,2011,29(4):476⁃480.
    [17] 苗文博,罗晓光,程晓丽,等.壁面催化对高超声速飞行器气动热性影响[J].空气动力学学报,2015,32(2):235⁃239.

    MIAO Wenbo,LUO Xiaoguang,CHENG Xiaoli,et al.Surface recombination effects on aerodynamic loads of hypersonic vehicles[J].Acta Aerodynamica Sinica,2015,32(2):235⁃239.(in Chinese)
    [18] LIOU M S.A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[R].AIAA 2003⁃4116,2003.
    [19] 程晓丽,艾邦成,王强.基于分子平均自由程的热流计算壁面网格准则[J].力学学报,2010,42(6):1083⁃1089.

    CHENG Xiaoli,AI Bangcheng,WANG Qiang.A wall grid scale criterion based on the molecule mean free path for the wall heat flux computations by the Navier⁃Stokes equations[J].Chinese Journal of Theoretical and Applied Mechanics,2010,42(6):1083⁃1089.(in Chinese)
  • 加载中
图(20)
计量
  • 文章访问数:  117
  • HTML浏览量:  35
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19

目录

    /

    返回文章
    返回