留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类X⁃47B无人机菱形编队气动干扰数值模拟

崔兴达 张露 刘钒 马率 肖中云 余永刚

崔兴达,张露,刘钒,等.类X⁃47B无人机菱形编队气动干扰数值模拟[J].航空动力学报,2022,37(8):1692‑1702. doi: 10.13224/j.cnki.jasp.20210125
引用本文: 崔兴达,张露,刘钒,等.类X⁃47B无人机菱形编队气动干扰数值模拟[J].航空动力学报,2022,37(8):1692‑1702. doi: 10.13224/j.cnki.jasp.20210125
CUI Xingda,ZHANG Lu,LIU Fan,et al.Numerical simulation on aerodynamic interference of UAVs like X⁃47B in rhombus formation[J].Journal of Aerospace Power,2022,37(8):1692‑1702. doi: 10.13224/j.cnki.jasp.20210125
Citation: CUI Xingda,ZHANG Lu,LIU Fan,et al.Numerical simulation on aerodynamic interference of UAVs like X⁃47B in rhombus formation[J].Journal of Aerospace Power,2022,37(8):1692‑1702. doi: 10.13224/j.cnki.jasp.20210125

类X⁃47B无人机菱形编队气动干扰数值模拟

doi: 10.13224/j.cnki.jasp.20210125
详细信息
    作者简介:

    崔兴达(1990-),男,助理研究员,硕士,主要从事计算空气力学研究。

    通讯作者:

    肖中云(1977-),男,研究员,博士,主要从事计算空气动力学研究。E⁃mail:scxiaozy@sina.cn

  • 中图分类号: V211.71

Numerical simulation on aerodynamic interference of UAVs like X⁃47B in rhombus formation

  • 摘要:

    设计了一种由4架类X⁃47B飞翼布局无人机(UAVs)组成的菱形编队。通过求解RANS方程的数值模拟方法,研究了菱形编队无人机气动干扰问题,详细分析了影响机理,定量给出了编队减阻效果。计算结果表明:头机气动性能基本保持不变。两侧僚机受上洗气流影响,其减阻效果明显。尾机主要受下洗气流影响,其阻力增大,对编队久航和远航不利。在重力配平条件下,两侧僚机飞行阻力的减小是由攻角减小和诱导阻力减小共同引起的。尾机在编队中飞行阻力的增大主要是攻角增大带来的阻力增加,诱导阻力增大仅带来了20%的阻力增量。从减小下洗气流对尾机的不利影响出发,对不同垂向间距的尾机升阻特性进行了研究,并参考雁群头鸟变换行为机制,给出了无人机菱形编队飞行建议。

     

  • 图 1  类X⁃47B无人机模型

    Figure 1.  UAV model like X⁃47B

    图 2  无人机编队重叠网格

    Figure 2.  Overlap grid for UAVs in formation

    图 3  风洞试验模型

    Figure 3.  Wind tunnel test model

    图 5  无人机菱形编队

    Figure 5.  Rhombus formation of UAVs

    图 6  典型截面流线分布(X=7 000)

    Figure 6.  Distribution of streamline on typical section (X=7 000)

    图 7  升阻力变化示意图(上洗气流)

    Figure 7.  Diagram of lift and drag increment (upwash flow)

    图 8  典型站位压强系数分布(η=0.65)

    Figure 8.  Distribution of pressure coefficient on typical section (η=0.65)

    图 9  典型截面流线分布(X=13 000)

    Figure 9.  Distribution of streamline on typical section (X=13 000)

    图 10  升阻力变化示意图(下洗气流)

    Figure 10.  Diagram of lift and drag increment (downwash flow)

    图 12  升力系数曲线(横坐标是UAV2/UAV3的攻角)

    Figure 12.  Curve of lift coefficient (the abscissa is angle of attack of UAV2 or UAV3)

    图 13  升力系数曲线(横坐标是UAV4的攻角)

    Figure 13.  Curve of lift coefficient (the abscissa is angle of attack of UAV4)

    图 14  调整尾机UAV4的垂向间距

    Figure 14.  Adjust the vertical spacing of tail UAV4

    图 15  垂向间距对UAV4升力系数的影响

    Figure 15.  Effect of the vertical spacing on lift coefficient of UAV4

    图 16  编队无人机位置轮换

    Figure 16.  Position shift of UAVs in formation

    表  1  α=6°时气动力计算结果比较

    Table  1.   Comparison of calculation results of aerodynamic force at α=6°

    无人机升力系数Cl阻力系数Cd升阻比k
    Single0.329 780.017 8018.52
    UAV10.335 270.017 8318.80
    UAV20.373 870.015 1224.72
    UAV30.373 880.015 1224.72
    UAV40.281 190.018 0215.61
    下载: 导出CSV

    表  2  巡航状态下气动力计算结果比较

    Table  2.   Comparison of calculation results of aerodynamic force in cruise state

    无人机攻角α/(°)升力系数Cl阻力系数Cd升阻比k
    Single6.00.329 780.017 8018.52
    UAV16.00.334 920.017 8418.77
    UAV25.30.333 850.013 3325.05
    UAV35.30.333 850.013 3225.06
    UAV47.10.334 680.022 4314.92
    下载: 导出CSV

    表  3  单机气动力计算结果

    Table  3.   Calculation results of aerodynamic force of single UAV

    攻角α/(°)升力系数Cl阻力系数Cd升阻比k
    5.30.289 360.015 7518.37
    7.10.392 310.021 5218.23
    下载: 导出CSV

    表  4  巡航状态Single和UAV4气动力计算结果比较

    Table  4.   Comparison of calculation results of aerodynamic force of single and UAV4 in cruise state

    无人机垂向间距Δy攻角α/(°)升力系数Cl阻力系数Cd升阻比k
    Single6.00.329 780.017 8018.52
    UAV40.0b7.10.334 680.022 4314.92
    UAV40.5b6.60.334 210.021 6015.47
    下载: 导出CSV
  • [1] 樊琼剑,杨忠,方挺,等.多无人机协同编队飞行控制的研究现状[J].航空学报,2009,30(4):683⁃691.

    FAN Qiongjian,YANG Zhong,FANG Ting,et al.Research status of coordinated formation flight control for multi⁃UAVs[J].Acta Aeronautica et Astronautica Sinica,2009,30(4):683‑691.(in Chinese)
    [2] 徐博,张大龙.基于量子行为鸽群优化的无人机紧密编队控制[J].航空学报,2020,41(8):313⁃324.

    XU Bo,ZHANG Dalong.Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J].Acta Aeronautica et Astronautica Sinica,2020,41(8):313⁃324.(in Chinese)
    [3] PACHTER M,D'SZZO J J,PROUD A W.Tight formation flight control[J].Journal of Guidance,Control,and Dynamic,2001,24(2):246⁃254.
    [4] BLAKE W,MULTHOPP D.Design,performance and modeling considerations for close formation flight[R].AIAA⁃1998‑4343,1998.
    [5] ATILLA D,SRIRAM V.Modeling of aerodynamic coupling between aircraft in close formation[J].Journal of aircraft,2005,42(7):941⁃945.
    [6] SRIRAM V,ATILLA D.Modeling of aerodynamic coupling between aircraft in close proximities[R].AIAA⁃2004⁃5172,2004.
    [7] SHAN J,LIU H.Close formation flight control with motion synchronization[J].Journal of Guidance Control,and Dynamics,2005,28(6):1316⁃1320.
    [8] 牟勇飚.无人机编队中的气动耦合问题研究[D].西安:西北工业大学,2006.

    MOU Yongbiao.Research on aerodynamic coupling in UAV formation flight[D].Xi'an:Northwestern Polytechnical University,2006.(in Chinese)
    [9] 李博,李学仁,杜军,等.无人机紧密编队气动耦合分析与仿真[J].计算机仿真,2015,32(8):94⁃98.

    LI Bo,LI Xueren,DU Jun,et al.Aerodynamic coupling analysis and simulation of multi⁃UAV tight formation flight[J].Computer Simulation,2015,32(8):94⁃98.(in Chinese)
    [10] 祁圣君,张喆.无人机近距编队飞行建模与仿真[J].航空工程进展,2012,3(3):362⁃366.

    QI Shengjun,ZHANG Zhe.Modeling and simulation of UAV close formation flight control[J].Advances in Aeronautical Science and Engineering,2012,3(3):362⁃366.(in Chinese)
    [11] HANSEN J,COBLEIGH B,RAY R,et al.Vortex⁃induced aerodynamic effects on a trailing F⁃18 aircraft flying in close formation[R].AIAA⁃2002⁃3432,2002.
    [12] BANGASH Z A,SANCHEZ R P,AHMED A,et al.Aerodynamics of formation flight[J].Journal of Aircraft,2006,43(4):907⁃912.
    [13] BLAKE W B,GINGRAS D R.Comparison of predicted and measured formation flight interference effects[J].Journal of Aircraft,2004,41(2):201⁃207.
    [14] ROMANDER E,BETZINA M,SILVA M,et al.Investigating tiltrotor formation flight via 1/48⁃sacle wind tunnel experiment[R].Phoenix,US:American Helicopter Society 62nd Annual Forum,2006.
    [15] AYUMU I,FUMIHIDE M,MASAHITO A.Detailed observations of interactions of wingtip vortices in close formation flight[J].Journal of Aircraft,2012,49(1):206⁃213.
    [16] HWANKEE C,SUNTAE L,CHEOLHEUI H.Experimental study on the aerodynamic characteristics of a fighter⁃type aircraft model in close formation flight[J].Journal of Mechanical Science and Technology,2014,28(8):3059⁃3065.
    [17] 刘志勇,陶洋,史志伟,等.编队飞行风洞实验研究[J].实验流体力学,2016,30(4):20⁃25.

    LIU Zhiyong,TAO Yang,SHI Zhiwei,et al.Investigation on formation flight in wind tunnel[J].Journal of Experiments in Fluid Mechanics,2016,30(4):20⁃25.(in Chinese)
    [18] WAGNER M G,JACQUES L D,BLAKE W,et al.Flight test results of close formation flight for fuel savings[R].AIAA⁃2002⁃4490,2002.
    [19] RAY R J,COBLEIGH B R,VACHON M J,et al.Flight test techniques used to evaluate performance benefits during formation flight[R].AIAA⁃2002⁃4492,2002.
    [20] PAHLE J,BERGER D,VENTI M,et al.An initial flight investigation of formation flight for drag reduction on the C⁃17 aircraft[R].AIAA⁃2012⁃4802,2012.
    [21] 袁园,闫建国,屈耀红.多无人机编队飞行气动耦合仿真[J].飞行力学,2013,31(1):29⁃32.

    YUAN Yuan,YAN Jianguo,QU Yaohong.The aerodynamic coupling simulation in the formation flight of multi⁃UAV[J].Flight Dynamics,2013,31(1):29⁃32.(in Chinese)
    [22] 刘志勇.紧密编队飞行涡流减阻机理及队形参数优化研究[D].合肥:中国科学技术大学,2016.

    LIU Zhiyong.Investigation on the mechanism of drag reduction and positional parameters optimization in close⁃formation flight[D].Hefei:University of Science and Technology of China,2016.(in Chinese)
    [23] 刘毅,赵晓霞,袁志敏,等.基于RANS方程的双机近距干扰气动特性计算分析[C]∥2019年(第四届)中国航空科学技术大会论文集.北京:中航出版传媒有限责任公司,2019:1101⁃1106.
    [24] 王辰,黎军,富佳伟,等.基于蜂群编队形式的气动耦合优化模型研究[J].飞机设计,2019,39(2):15⁃19.

    WANG Chen,LI Jun,FU Jiawei,et al.The research on aerodynamic coupling optimization model based on swarm formation[J].Aircraft Design,2019,39(2):15⁃19.(in Chinese)
    [25] 李文皓,张珩.无人机编队飞行技术的研究现状与展望[J].飞行力学,2007,25(1):9⁃11.

    LI Wenhao,ZHANG Heng.Reviews on unmanned aerial vehicle formation flight[J].Flight Dynamics,2007,25(1):9⁃11.(in Chinese)
    [26] 牟斌,肖中云,周铸,等.多重网格技术在复杂粘性流场计算中的应用及研究[J].空气动力学学报,2006,24(1):51⁃54.

    MOU Bin,XIAO Zhongyun,ZHOU Zhu,et al.Application and investigation of multiblock multigrid method in complicated viscous flow fields calculation[J].Acta Aerodynamica Sinica,2006,24(1):51⁃54.(in Chinese)
    [27] 侯凌云,严传俊.复杂几何域中不可压流动的多重网格计算[J].航空动力学报,1998,13(3):245⁃248,343.

    HOU Lingyun,YAN Chuanjun.A multigrid computation of incompressible flow in complex geometries[J].Journal of Aerospace Power,1998,13(3):245⁃248,343.(in Chinese)
    [28] 余永刚,黄勇,周铸,等.飞翼布局气动外形设计[J].空气动力学学报,2017,35(6):832⁃836,878.

    YU Yonggang,HUANG Yong,ZHOU Zhu,et al.Aerodynamic design of a flying⁃wing aircraft[J].Acta Aerodynamica Sinica,2017,35(6):832⁃836,878.(in Chinese)
    [29] 肖中云,刘刚,牟斌,等.旋转坐标系下分区计算的LU隐式方法[J].航空学报,2018,39(10):125⁃131.

    XIAO Zhongyun,LIU Gang,MOU Bin,et al.LU implicit methods for partitioned computation in rotating coordinate system[J].Acta Aeronautica et Astronautica Sinica,2018,39(10):125⁃131.(in Chinese)
    [30] WEIMERSKIRCH H,MARTIN J,CLERQUIN Y,et al.Energy saving in flight formation[J].Nature,2001,413:697‑698.
    [31] SPEAKMAN J R,BANKS D.The function of flight formations in Greylag Geese Anser anser; energy saving or orientation?[J].Ibis,2010,140(2):280⁃287.
    [32] 周子为,段海滨,范彦铭,等.仿雁群行为机制的多无人机紧密编队[J].中国科学 技术科学,2017,47(3):230⁃238.

    ZHOU Ziwei,DUAN Haibin,FAN Yanming,et al.Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J].SCIENTIA SINICA Technologica,2017,47(3):230⁃238.(in Chinese)
    [33] VOELKL B,PORTUGAL S J,UNSOLD M,et al.Matching times of leading and following suggest cooperation through direct reciprocity during V⁃formation flight in ibis[J].Proceedings of the National Academy of Sciences,2015,112(7):2115⁃2120.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  79
  • HTML浏览量:  49
  • PDF量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19

目录

    /

    返回文章
    返回