留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切载荷下基于接触面滑移-黏着接触状态变化的螺栓松动特性

王开平 闫明 苏东海 孙自强

王开平, 闫明, 苏东海, 等. 剪切载荷下基于接触面滑移-黏着接触状态变化的螺栓松动特性[J]. 航空动力学报, 2023, 38(2):453-461 doi: 10.13224/j.cnki.jasp.20210127
引用本文: 王开平, 闫明, 苏东海, 等. 剪切载荷下基于接触面滑移-黏着接触状态变化的螺栓松动特性[J]. 航空动力学报, 2023, 38(2):453-461 doi: 10.13224/j.cnki.jasp.20210127
WANG Kaiping, YAN Ming, SU Donghai, et al. Bolt loosening characteristics based on change of slip-adhesion contact state under shear load[J]. Journal of Aerospace Power, 2023, 38(2):453-461 doi: 10.13224/j.cnki.jasp.20210127
Citation: WANG Kaiping, YAN Ming, SU Donghai, et al. Bolt loosening characteristics based on change of slip-adhesion contact state under shear load[J]. Journal of Aerospace Power, 2023, 38(2):453-461 doi: 10.13224/j.cnki.jasp.20210127

剪切载荷下基于接触面滑移-黏着接触状态变化的螺栓松动特性

doi: 10.13224/j.cnki.jasp.20210127
基金项目: 国家自然科学基金项目(51705337); 辽宁省 “兴辽英才计划”项目(XLYC1802077)
详细信息
    作者简介:

    王开平(1993-),男,博士生,主要从事螺栓连接件研究

  • 中图分类号: V415.1

Bolt loosening characteristics based on change of slip-adhesion contact state under shear load

  • 摘要:

    为研究螺栓松动特性,首先建立了带升角螺纹螺栓连接结构精细有限元模型,采用施加力矩法施加了初始预紧力,然后进行了螺栓松动特性仿真分析,提出了基于螺栓头接触面和螺纹接触面滑移-接触状态变化分析螺栓松动特性的方法,最后对该方法进行了准确性验证。结果表明:螺栓头接触面和螺纹接触面滑移-黏着接触状态变化规律能准确表征螺栓松动特性;两接触面滑移-黏着接触状态的交替变化是造成螺栓松动的主要因素,若始终存在黏着区域,螺栓松动不会发生;接触面处于滑移状态区域面积越大,增长速率越快,螺栓松动越容易发生;振幅越大、偏心距离越大,两接触面进入滑移状态的区域面积越大、速率越快,螺栓松动越容易发生;两接触面摩擦因数相差越大,螺栓松动越不容易发生,并存在一个两接触面摩擦因数匹配值范围,使螺栓松动最容易发生。

     

  • 图 1  单螺栓连接结构、螺栓、螺母及平板模型

    Figure 1.  Single bolt connection structure, bolt, nut and flat plate model

    图 2  螺纹接触面截面模型

    Figure 2.  Section model of thread contact surface

    图 3  螺栓连接结构偏心结构图

    Figure 3.  Eccentric structure diagram of bolt connection structure

    图 4  施加力矩法示意图

    Figure 4.  Schematic diagram of torque application method

    图 5  螺栓、螺母、螺纹啮合面间Mises应力云图

    Figure 5.  Intermeshing Mises stress nephogram of bolts, nuts and threads

    图 6  螺栓连接结构中轴力系数数值解和有限元仿真值变化曲线对比

    Figure 6.  Numerical solution and finite element simulation value curve of axial force coefficient in bolted structure

    图 7  不同位移载荷振幅下螺栓头接触面和螺纹接触面滑移-黏着接触状态变化图

    Figure 7.  Slip-adhesion slip contact state change diagram of bolt head contact surface and thread contact surface under different displacement load amplitudes

    图 8  不同螺栓头接触面摩擦因数下螺栓头接触面和螺纹接触面接触状态变化图

    Figure 8.  Change of contact state between bolt head contact surface and thread contact surface under different friction coefficient of bolt head contact surface

    图 9  各螺纹接触面摩擦因数下接触面滑移-黏着接触状态变化图

    Figure 9.  Change diagram of contact surface slip-adhesion contact state under friction coefficient of each thread contact surface

    图 10  不同偏心距离下螺栓头接触面和螺纹接触面滑移-黏着接触状态变化图

    Figure 10.  Slip-adhesion contact state change diagram of bolt head contact surface and thread contact surfaceunder different eccentric distance

    图 11  不同振幅下残余预紧力和初始预紧力比值变化图

    Figure 11.  Change of ratio of residual preload to initial preload under different amplitudes

    图 12  不同振幅下螺栓头部旋转角度变化图

    Figure 12.  Change of bolt head rotation angle under different amplitude

    图 13  不同螺栓头接触面摩擦因数下残余预紧力和初始预紧力比值变化图

    Figure 13.  Variation of ratio of residual preload to initial preload under different friction coefficient of bolt head contact surface

    图 14  不同螺栓头接触面摩擦因数下螺栓头部旋转角度变化图

    Figure 14.  Change of bolt head rotation angle under different friction coefficient of bolt head contact surface

    图 15  不同螺纹接触面摩擦因数下残余预紧力和初始预紧力比值变化图

    Figure 15.  Variation of ratio of residual preload to initial preload under different friction coefficient of thread contact surface

    图 16  不同螺纹接触面摩擦因数下螺栓头部旋转角度变化图

    Figure 16.  Change of bolt head rotation angle under different friction coefficient of thread contact surface

    图 17  不同偏心距离下残余预紧力和初始预紧力比值变化图

    Figure 17.  Variation of ratio between residual preload and initial preload under different eccentrici ty distances

    图 18  不同偏心距离下螺栓头部旋转角度变化图

    Figure 18.  Change of bolt head rotation angle under different eccentric distance

  • [1] IBRAHIM R A, PETTIT C L. Uncertainties and dynamic problems of bolted joints and other fasteners[J]. Journal of Sound and Vibration, 2003, 279(3): 857- 936.
    [2] 王志,李吉凯,刘玉. 带止口法兰连接结构刚度特性对结构振动影响[J]. 航空动力学报,2019,34(6): 1201-1208.

    WANG Zhi,LI Jikai,LIU Yu. Influence of structural stiffness characteristics on structural vibration of flanged connections with flanges[J]. Journal of Aerospace Power,2019,34(6): 1201-1208. (in Chinese)
    [3] 白聪儿,宣海军,米栋,等. 离心压气机包容结构连接螺栓建模方法[J]. 航空动力学报,2019,34(2): 313-320.

    BAI Conger,XUAN Haijun,MI Dong,et al. Modeling method for connecting bolts of centrifugal compressor containment structure[J]. Journal of Aerospace Power,2019,34(2): 313-320. (in Chinese)
    [4] JUNKER G H. New criteria for self-loosening of fasteners under vibration[J]. Society Automotive Engineering,1969,78(12): 314-335.
    [5] PAI N G,HESS D P. Experimental study of loosening of threaded fasteners due to dynamic shear loads[J]. Journal of Sound and Vibration,2002,253(3): 585-602. doi: 10.1006/jsvi.2001.4006
    [6] 巩浩,刘检华,丁晓宇. 振动条件下螺纹预紧力衰退机理和影响因素研究[J]. 机械工程学报,2019,55(11): 138-148. doi: 10.3901/JME.2019.11.138

    GONG Hao,LIU Jianhua,DING Xiaoyu. Study on the mechanism and influencing factors of preload decline for bolted joints under vibration[J]. Journal of Mechanical Engineering,2019,55(11): 138-148. (in Chinese) doi: 10.3901/JME.2019.11.138
    [7] DINGER G,FRIEDRICH C. Avoiding self-loosening failure of bolted joints with numerical assessment of local contact state[J]. Engineering Failure Analysis,2011,18(8): 2188-2200. doi: 10.1016/j.engfailanal.2011.07.012
    [8] DINGER G. Design of multi-bolted joints to prevent self-loosening failure[J]. Journal of Mechanical Engineering Science,2016,230(15): 2564-2578. doi: 10.1177/0954406215612813
    [9] IZUMI S,YOKOYAMA T,IWASAKI A,et al. Three-dimensional finite element analysis of tightening and loosening mechanism of threaded fastener[J]. Engineering Failure Analysis,2005,12: 604-615. doi: 10.1016/j.engfailanal.2004.09.009
    [10] IZUMI S,KIMURA M,SAKAI S. Small loosening of bolt-nut fastener due to micro bearing-surface slip: a finite element method study[J]. Journal of Solid Mechanics and Materials Engineering,2007,1(11): 1374-1384. doi: 10.1299/jmmp.1.1374
    [11] KASEI S. A study of self-loosening of bolted joints due to repetition of small amount of slippage at bearing surface[J]. Journal of Advanced Mechanical Design Systems and Manufacturing,2007,1(3): 358-367. doi: 10.1299/jamdsm.1.358
    [12] NASSAR S A,YANG X J. A mathematical model for vibration-induced loosening of preloaded threaded fasteners[J]. Journal of Vibration and Acoustics,2009,131(2): 9-21.
    [13] ZHANG M,JIANG Y,LEE C. Finite element modeling of self-loosening of bolted joints[J]. Journal of Mechanical Design,2007,129(2): 218-226. doi: 10.1115/1.2406092
    [14] IBRAHIM R A,PETTIT C L. Uncertainties and dynamic problems of bolted joints and other fasteners[J]. Journal of Sound and Vibration,2005,279(3/4/5): 857-936. doi: 10.1016/j.jsv.2003.11.064
    [15] LIU Jianhua,OUYANG Huajiang,PENG Jinfang,et al. Experimental and numerical studies of bolted joints subjected to axial excitation[J]. Wear,2016,346(11): 66-77.
    [16] LIU Jianhua,OUYANG Huajiang,FENG Zhiqiang,et al. Study on self-loosening of bolted joints excited by dynamic axial load[J]. Tribology International,2017,115: 432-451. doi: 10.1016/j.triboint.2017.05.037
    [17] 杜永强,刘建华,刘学通,等. 偏心载荷作用下螺栓连接结构的松动行为研究[J]. 机械工程学报,2018,54(14): 74-81.

    DU Yongqiang,LIU Jianhua,LIU Xuetong,et al. Research on self-loosening behavior of bolted joints under eccentric excitation[J]. Journal of Mechanical Engineering,2018,54(14): 74-81. (in Chinese)
    [18] 王开平, 闫明, 孙自强, 等. 剪切载荷下航空发动机螺栓松动行为及其临界值的数值模拟研究[J]. 推进技术, 2022, 43(2): 43-54.

    WANG Kaiping, YAN Ming, SUN Ziqiang, et al. Numerical simulation study on the loosening behavior and critical value of aeroengine bolts under shear load[J]. Propulsion Technology, 2022, 43(2): 43-54. (in Chinese)
  • 加载中
图(18)
计量
  • 文章访问数:  170
  • HTML浏览量:  26
  • PDF量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 网络出版日期:  2023-01-08

目录

    /

    返回文章
    返回