留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发动机舱油雾着火及火蔓延特性的数值模拟

丁芳 李松阳 丛北华

丁芳, 李松阳, 丛北华. 发动机舱油雾着火及火蔓延特性的数值模拟[J]. 航空动力学报, 2023, 38(2):279-287 doi: 10.13224/j.cnki.jasp.20210196
引用本文: 丁芳, 李松阳, 丛北华. 发动机舱油雾着火及火蔓延特性的数值模拟[J]. 航空动力学报, 2023, 38(2):279-287 doi: 10.13224/j.cnki.jasp.20210196
DING Fang, LI Songyang, CONG Beihua. Numerical simulation on fire and spread characteristics of oil spray in engine compartment[J]. Journal of Aerospace Power, 2023, 38(2):279-287 doi: 10.13224/j.cnki.jasp.20210196
Citation: DING Fang, LI Songyang, CONG Beihua. Numerical simulation on fire and spread characteristics of oil spray in engine compartment[J]. Journal of Aerospace Power, 2023, 38(2):279-287 doi: 10.13224/j.cnki.jasp.20210196

发动机舱油雾着火及火蔓延特性的数值模拟

doi: 10.13224/j.cnki.jasp.20210196
基金项目: 国家科技重大专项(J2019-Ⅷ-0010-0171)
详细信息
    作者简介:

    丁芳(1991-),女,工程师,硕士,主要从事航空发动机防火技术研究

  • 中图分类号: V231.2+4

Numerical simulation on fire and spread characteristics of oil spray in engine compartment

  • 摘要:

    为研究发动机舱内典型火灾规律,采用大涡模拟技术,针对某型发动机核心机舱建立了油雾火的火灾模型,研究舱内着火及火蔓延规律,分析不同泄漏位置及泄漏孔朝向对火焰传播及温度、热流分布的影响。结果表明:在舱内的通风热环境下,油雾泄漏会被引燃并稳定燃烧,中间有一定的潜伏期,火灾强度较大,破坏性严重;油雾火灾是典型的由通风控制的不充分燃烧过程,呈现一定的蔓延规律,火焰中心位于高速回流区,向引气口及尾部排气方向快速蔓延;不同泄漏位置及泄漏孔朝向对火灾的蔓延形态、温度及热流的分布有一定影响,其中泄漏位置对温度热流峰值影响较大,泄漏孔朝向对温度热流的分布影响较大。

     

  • 图 1  核心机舱的几何模型

    Figure 1.  Geometric model of core compartment

    图 2  舱内的流动传热初场

    Figure 2.  Initial flow and heat transfer field of compartment

    图 3  舱内沿程平均流速、温度分布

    Figure 3.  Average velocity and temperature distribution of compartment

    图 4  油雾着火及稳燃过程

    Figure 4.  Initial and steady combustion process of spray fire

    图 5  油雾着火过程的热释放率与燃油蒸气质量

    Figure 5.  Heat release rate and fuel vapor quality of spray fire

    图 6  油雾火灾蔓延情况

    Figure 6.  Spread performance of oil spray

    图 7  燃烧稳定时的温度和速度矢量分布

    Figure 7.  Temperature and velocity vector distribution of stable combustion

    图 8  不同泄漏形式的舱内火蔓延规律

    Figure 8.  Fire spread regulation in compartment of different leakage forms

    图 9  不同泄漏孔位置的温度热流分布

    Figure 9.  Temperature and heat flux distribution in different locations of nozzle

    图 10  不同泄漏孔朝向的温度热流分布

    Figure 10.  Temperature and heat flux distribution in different orientations of nozzle

    表  1  燃油RP-3物性参数

    Table  1.   Physical parameters of fuel RP-3

    参数数值及说明
    化学式C12H23
    比定压热容/ (kJ/(kg·℃))2.188
    密度/(kg/m3779.6
    凝固点/℃−47
    蒸发温度/℃223
    汽化潜热/(kJ/kg)325
    自燃点(AIT)/℃425
    临界火焰温度(CFT)/℃1327
    燃烧热值/(kJ/kg)43530
    下载: 导出CSV

    表  2  油雾火计算工况表

    Table  2.   Calculation conditions of spray fire

    工况泄漏孔位置泄漏孔
    朝向
    备注
    xyz
    10.5−0.419−0.17+x基准工况
    20.995−0.419−0.17+x变轴向位置
    30.5−0.419 0.17+x变周向位置
    40.5−0.419−0.17x泄漏孔朝向改变
    50.5−0.419−0.17+z泄漏孔朝向改变
    下载: 导出CSV
  • [1] MULLENDER A J, HORROCKS D M, BINKS D. The numerical simulation and experimental validation of ventilation flow and fire events in a trent nacelle fire zone [C]//ICAS Congress, International Council of the Aeronautical Sciences. Harrogate York, UK: 22nd international congress of aeronautical sciences, 2000: 681.1-681.10
    [2] MOSS J B, RUBINI P A, SANDERSON V, et al. The simulation of engine casing fires: computational modelling and experiment[C]// NATO RTO Fire and Survivability, Specialists Meeting. Aalborg, Denmark: Applied Vehicle Technology Panel, 2002: 23-26.
    [3] FASQUELLE A, RUBINI P A. Experiments and transient numerical simulations of fire events in a gas turbine engine nacelle[C]//2nd Fire Bridge Conference. Belfast, UK: Sandia National Laboratories, 2005: 9-11.
    [4] HEWSON J C, TIESZEN S R, SUNDBERG W D, et al. CFD modeling of fire suppression and its role in optimizing suppressant distribution[C]// Proceedings of the Halon Options Technical Conference. New York: Department of Mechanical and Aerospace Engineering, 2003: 1-15.
    [5] FUMIAKI T,SCHMOLL W. J, EDWARD A, et al. Suppression behavior of obstruction-stabilized pool flames[J]. Combustion Science and Technology,2001,163(1): 107-130. doi: 10.1080/00102200108952153
    [6] BLACK A R, SUO A J M, DISMILE P J, et al. Numerical predictions and experimental results of air flow in a smooth quarter-scale nacelle[R]. AIAA 2002-0856, 2002.
    [7] NICOLETTE V F, TIESZEN S R, GRITZO L A, et al. Numerical simulation of fire in an aircraft engine nacelle[M]. Gaith-ersburg, USA: National Institute of Standards and Technology, 1996: 143-144.
    [8] LI S Y, ACHAYRA R, COLKET M, et al. Modeling water-mist based suppression of 34 GJ car-deck fires using FDS[C]//Suppression, Detection and Signaling Research and Applications Symposium. Orlando, US: United Technologies Research Center, 2013: 43-45.
    [9] CAO C, CORN M, SANKARAN V, et al. Smoke transport modeling in cargo bays parametric study[C]//FAA Systems Working Group Meeting. Atlantic, US: FAA Technical Center-Fire Safety Branch, 2018: 8-10.
    [10] CAO C, CORN M, SANKARAN V. Large-scale diesel pool fire modeling[C]//10th US National Combustion Meeting. College Park, Maryland, US: University of Maryland, 2017: 167-172.
    [11] 牛雪民,谢永奇,余建祖. 无通风直升机动力舱火灾温度场数值模拟[J]. 航空动力学报,2011,26(8): 1761-1767.

    NIU Xuemin,XIE Yongqi,YU Jianzu. Numerical simulation study on temperature field of helicopter nacelle fire under non-ventilation condition[J]. Journal of Aerospace Power,2011,26(8): 1761-1767. (in Chinese)
    [12] 王伟,杨毅成,尹莉萍,等. 当量比对航空发动机防火试验温度场的数值分析[J]. 科学技术与工程,2017,17(19): 301-307. doi: 10.3969/j.issn.1671-1815.2017.19.055

    WANG Wei,YANG Yicheng,YIN Liping,et al. Analysis of equivalence ratio effect on flame temperature of NexGen burner[J]. Science Technology and Engineering,2017,17(19): 301-307. (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.19.055
    [13] 王伟,刘帅,白杰. 飞机防火试验中的燃烧反应动力学模型研究[J]. 火灾科学,2016,25(4): 179-182. doi: 10.3969/j.issn.1004-5309.2016.04.01

    WANG Wei,LIU Shuai,BAI Jie. Research on kinetic model of combustion reaction in airplane fire test[J]. Fire Safety Science,2016,25(4): 179-182. (in Chinese) doi: 10.3969/j.issn.1004-5309.2016.04.01
    [14] 王伟,吕凯. 航空发动机部件防火试验热流计影响因素的数值分析[J]. 科学技术与工程,2015,15(31): 163-167,178. doi: 10.3969/j.issn.1671-1815.2015.31.030

    WANG Wei,LÜ Kai. Numerical analysis of influencing factors of heat flow meter in fire test of aero-engine[J]. Science Technology and Engineering,2015,15(31): 163-167,178. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.31.030
    [15] 曹彬,张礼敬,张村峰,等. 比较FDS和FLUENT在池火灾模拟中的应用[J]. 中国安全生产科学技术,2011,7(9): 45-49. doi: 10.3969/j.issn.1673-193X.2011.09.008

    CAO Bin,ZHANG Lijing,ZHANG Cunfeng,et al. Compare the application of FDS and FLUENT in pool fire simulation[J]. Journal of Safetyscience and Technology,2011,7(9): 45-49. (in Chinese) doi: 10.3969/j.issn.1673-193X.2011.09.008
    [16] 李松阳,邵兴晨. 浮力修正湍流模型在发动机火灾模拟中的应用[J]. 航空发动机,2016,42(6): 58-65.

    LI Songyang,SHAO Xingchen. Application on buoyancy corrected turbulent model in nacelle fire modeling[J]. Aeroengine,2016,42(6): 58-65. (in Chinese)
    [17] KEVIN M G, SIMO H, RANDALL M D. Fire dynamics simulator (version 6), user’s guide[M]. Gaithersburg, Maryland: National Institute of Standards and Technology, 2015.
    [18] KEVIN M G, SIMO H, RANDALL M D. Fire dynamics simulator (version 6), technical reference guide, volume 1: mathematical model[M]. Gaithersburg, US: National Institute of Standards and Technology, 2015.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  184
  • HTML浏览量:  37
  • PDF量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 网络出版日期:  2022-12-23

目录

    /

    返回文章
    返回