留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中心分级燃烧室慢车工况油雾场特性

段争梁 桂韬 房人麟 刘云鹏 颜应文

段争梁, 桂韬, 房人麟, 等. 中心分级燃烧室慢车工况油雾场特性[J]. 航空动力学报, 2023, 38(2):298-311 doi: 10.13224/j.cnki.jasp.20210199
引用本文: 段争梁, 桂韬, 房人麟, 等. 中心分级燃烧室慢车工况油雾场特性[J]. 航空动力学报, 2023, 38(2):298-311 doi: 10.13224/j.cnki.jasp.20210199
DUAN Zhengliang, GUI Tao, FANG Renlin, et al. Characteristics of fuel spray field in central staged combustor at idle condition[J]. Journal of Aerospace Power, 2023, 38(2):298-311 doi: 10.13224/j.cnki.jasp.20210199
Citation: DUAN Zhengliang, GUI Tao, FANG Renlin, et al. Characteristics of fuel spray field in central staged combustor at idle condition[J]. Journal of Aerospace Power, 2023, 38(2):298-311 doi: 10.13224/j.cnki.jasp.20210199

中心分级燃烧室慢车工况油雾场特性

doi: 10.13224/j.cnki.jasp.20210199
基金项目: 国家科技重大专项(J2019-Ⅲ-0004-0047)
详细信息
    作者简介:

    段争梁(1997-),男,助理工程师,硕士,主要从事航空发动机燃烧室燃烧研究

    通讯作者:

    刘云鹏(1992-),男,讲师,博士,主要从事航空发动机燃烧室燃烧相关技术研究。E-mail:ypliu@nuaa.edu.cn

  • 中图分类号: V231.2

Characteristics of fuel spray field in central staged combustor at idle condition

  • 摘要:

    为获得中心分级燃烧室慢车工况下主副级油雾场特性,采用粒子图像测速仪(PIV)对单管燃烧室不同头部方案和不同喷嘴燃油比例的油雾场进行试验测量,开发了油雾场图像后处理软件,对油雾场图像进行后处理,获得了中心分级燃烧室油雾场空间分布。慢车工况下油雾场试验结果表明:大粒径油珠在燃烧室富油头部区域呈锥形分布,同时索太尔平均直径(SMD)沿径向呈V型分布,即中间小、两侧大。燃烧室头部折流板扩张角的减小,使得燃烧室富油头部区域油珠数目集中、同时平均SMD较大。保持来流条件和油气比一定时,改变燃油比例对燃烧室雾化效果影响不大。油雾场中油珠数目最多的粒径是25 μm,而体积占比最大的粒径范围是30~50 μm。

     

  • 图 1  中心分级燃烧室结构示意图

    Figure 1.  Schematic of geometric structure of the center-staged combustor

    图 2  燃烧室头部方案组合结构示意图

    Figure 2.  Schematic of combustor head component combination

    图 3  油雾特性试验系统示意图

    Figure 3.  Diagram of experiment system about characteristics of spray

    图 4  油雾场拍摄方法示意图

    Figure 4.  Schematic of photograph method for fuel spray field

    图 5  油珠提取示意图

    Figure 5.  Schematic of spray droplets

    图 6  拍摄结果与燃烧室位置关系

    Figure 6.  Relative position of between observed results with combustor

    图 7  油雾场图像处理方法验证

    Figure 7.  Verification of image processing method for fuel field

    图 8  值班级喷嘴燃油占比100%时方案A和方案B的d32分布云图

    Figure 8.  Distribution contour of d32 for Plan A and Plan B at pilot nozzle fuel ratio 100%

    图 9  值班级喷嘴燃油占比100%时方案A和方案B的油珠数目分布云图

    Figure 9.  Distribution contour of droplets number of Plan A and Plan B at pilot nozzle fuel ratio 100%

    图 10  值班级喷嘴燃油占比60%时方案 A和方案 B的d32分布云图

    Figure 10.  Distribution contour of d32 for Plan A and Plan B at pilot nozzle fuel ratio 60%

    图 11  方案 B不同燃油比例全场d32分布

    Figure 11.  Distribution of d32 for different fuel ratios about Plan B

    图 12  方案 C不同燃油比例全场d32和油珠数目分布

    Figure 12.  Distribution of d32 and droplets number for different fuel ratios about Plan C

    图 13  方案 C慢车工况下流线分布

    Figure 13.  Distribution of streamlines for Plan C at idle condition

    图 14  不同方案下富油头部区和全场油珠数目对比示意图

    Figure 14.  Schematic of comparison of number of droplets between Rich head filed with whole area for different plans

    图 15  富油头部区域与全场区域平均d32差异水平示意图

    Figure 15.  Schematic of the average d32 difference between the fuel-rich head area and the whole area

    图 16  不同工况下油珠数量及体积随粒径的分布规律

    Figure 16.  Distribution of fuel droplets number and volume with particle size for different conditions

    表  1  燃烧室进口条件

    Table  1.   Operation conditions for combustor inlet

    燃烧室进口
    压力p3/kPa
    燃烧室进口
    温度T3/K
    进口空气
    流量${\dot m}_3 $/(g/s)
    燃烧室油气比
    (FAR)
    3404506200.014
    下载: 导出CSV

    表  2  试验工况参数表

    Table  2.   Operating parameters of experiment

    方案油气比值班级喷嘴
    燃油占比/%
    主燃级喷嘴
    燃油占比/%
    方案A0.0141000
    0.0146040
    方案B0.0141000
    0.0148020
    0.0146040
    0.0144060
    0.0142080
    方案 C0.0141000
    0.0148020
    0.0146040
    0.0144060
    0.0142080
    下载: 导出CSV

    表  3  方案 A和方案 B的全场平均d32

    Table  3.   Results of Average d32 for Plan A and Plan B

    工况头部方案全场平均d32/μm
    值班级喷嘴燃油
    占比100%
    方案B59.70
    方案A52.32
    值班级喷嘴燃油
    占比60%
    方案B56.57
    方案A56.24
    下载: 导出CSV

    表  4  方案 B全场平均d32

    Table  4.   Average d32 of full zones for Plan B

    值班级燃油比例/%全场平均d32/μm
    8058.3
    6056.2
    4054.4
    2056.7
    下载: 导出CSV

    表  5  方案 C全场平均d32

    Table  5.   Average d32 of full zones for Plan C

    值班级燃油比例/%全场平均d32/μm
    10053.9
    8054.8
    6053.2
    4055.95
    2055.2
    下载: 导出CSV
  • [1] 刘大响,金捷,彭友梅,等. 大型飞机发动机的发展现状和关键技术分析[J]. 航空动力学报,2008,23(6): 976-980.

    LIU Daxiang,JIN Jie,PENG Youmei,et al. Summarization of development status and key technologies for large airplane engines[J]. Journal of Aerospace Power,2008,23(6): 976-980. (in Chinese)
    [2] BAHR W W, GLEASON C C. Experiment clean combustor program: phase 1 final report[R]. NACA-CR-134737, 1975.
    [3] 金如山, 索建秦.先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016
    [4] 刘富强,穆勇,刘存喜,等. 燃油分级对中心分级燃烧室NOx排放的影响[J]. 燃烧科学与技术,2013,19(3): 254-260.

    LIU Fuqiang,MU Yong,LIU Cunxi,et al. Influence of fuel stage proportion on NOx emission from central stage combustor[J]. Journal of Combustion Science and Technology,2013,19(3): 254-260. (in Chinese)
    [5] 张峥. 燃烧室燃油喷雾场特性研究[D]. 南京: 南京航空航天大学, 2009.

    ZHANG Zheng. Experimental study on fuel spray characteristics in model combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [6] 朱嘉伟. LPP低污染燃烧室头部方案研究[D]. 南京: 南京航空航天大学, 2013.

    ZHU Jiawei. Research on the heads projects of LPP low emission combustor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [7] 金仁瀚,刘勇,冯志鹏,等. 双旋流燃烧室单头部油雾特性实验[J]. 航空动力学报,2014,29(2): 250-258.

    JIN Renhan,LIU Yong,FENG Zhipeng,et al. Experiment on spray characteristic of single head of dual-swirl cup combustor[J]. Journal of Aerospace Power,2014,29(2): 250-258. (in Chinese)
    [8] 党龙飞,颜应文,徐榕,等. 双油路离心喷嘴油雾特性试验研究[J]. 南京航空航天大学学报,2013,45(4): 453-460. doi: 10.3969/j.issn.1005-2615.2013.04.003

    DANG Longfei,YAN Yingwen,XU Rong,et al. Experimental Study on fuel spray characteristics of pressure-swirl atomizer[J]. Journal of Nanjing University of Aeronautics & Astrunautics,2013,45(4): 453-460. (in Chinese) doi: 10.3969/j.issn.1005-2615.2013.04.003
    [9] 刘易安,郭志辉,张漫. 中心分级燃烧室雾化特性试验研究[J]. 推进技术,2019,40(8): 1824-1831. doi: 10.13675/j.cnki.tjjs.180490

    LIU Yian,GUO Zhihui,ZHANG Man. Experimental investigation on spray characteristics of internally-staged combustor[J]. Journal of Propulsion Technology,2019,40(8): 1824-1831. (in Chinese) doi: 10.13675/j.cnki.tjjs.180490
    [10] 王家俊,桂韬,邱伟,等. 燃油温度对离心喷嘴雾化特性影响的试验[J]. 航空动力学报,2020,35(8): 1634-1654.

    WANG Jiajun,GUI Tao,QIU Wei,et al. Experiment on the influence of fuel temperature on the atomization characteristics of centrifugal nozzles[J]. Journal of Aerospace Power,2020,35(8): 1634-1654. (in Chinese)
    [11] 傅江坤,周建华,郭志辉. 中心分级燃烧室预燃级的喷雾特性研究[J]. 推进技术,2020,41(6): 1305-1313. doi: 10.13675/j.cnki.tjjs.190372

    FU Jiangkun,ZHOU Jianhua,GUO Zhihui. Experimental investigation on pilot spray characteristics of internally-staged combustorp[J]. Journal of Propulsion Technology,2020,41(6): 1305-1313. (in Chinese) doi: 10.13675/j.cnki.tjjs.190372
    [12] 陈登炳. 中心分级燃烧室头部油雾场试验研究[D]. 南京: 南京航空航天大学, 2019

    CHEN Dengbing. Experimental study on fuel spray field of the central-staged combsutor head[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [13] CAI J, JENG S M, TACINA R. The structure of a swirl-stabilized reacting spray issued from an axial swirler[C]// 43rd AIAA Aerospace Sciences Meeting & Exhibit. Reston : AIAA, 2005: 14-24.
    [14] FELDEN A. Development of analytically reduced chemistries (ARC) and applications in large eddy simulations (LES) of turbulent combustion[D]. France: Institut National Polytechnique de Toulouse, 2017.
    [15] FAN Xiongjie,XU Gang,LIU Cunxi,et al. Experimental investigations of the flow field structure and interactions between sectors of a double-swirl low-emission combustor: effects of main stage swirl intensity and venturi angle[J]. Journal of Thermal Science,2020,29(1): 813-819.
    [16] YAN Yingwen,WANG Yajun,DENG Yuanhao,et al. Fuel spray characteristics investigation in LPP combustor[J]. Aircraft Engineering and Aerospace Technology,2016,88(4): 498-507. doi: 10.1108/AEAT-10-2014-0157
    [17] LUCAS E,MA P C,MAYHEW E,et al. Fuel effects on lean blow-out in a realistic gas turbine combustor[J]. Combustion and Flame,2017,181: 82-99. doi: 10.1016/j.combustflame.2017.02.035
    [18] WOOD E J, MCGANN B, MOTILY A, et al. Impact of fuel properties on combusting jet fuel spray breakup, analyzed using high-speed phase contrast imaging[R]. AIAA 2020-0522, 2020.
    [19] OPACICH K C, HEYNE J S, PEIFFER E, et al. Analyzing the relative impact of spray and volatile fuel properties on gas turbine combustor ignition in multiple rig geometries[R]. AIAA 2019-1434, 2019.
    [20] 李继保,胡正义. 高温升高热容燃烧室设计技术分析[J]. 燃气涡轮试验与研究,2000,13(4): 5-8. doi: 10.3969/j.issn.1672-2620.2000.04.002

    LI Jibao,HU Zhengyi. Design technology for high-temperature rise and high-heat capacity combustor[J]. Gas Turbine Experiment and Research,2000,13(4): 5-8. (in Chinese) doi: 10.3969/j.issn.1672-2620.2000.04.002
    [21] LEFEBVRE A H. Fuel effects on gas turbine combustion: ignition, stability, and combustion efficiency[J]. Journal of Engineering for Gas Turbine and Power,1984,107(24): 23-37.
    [22] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第9册 主燃烧室设计[M]. 北京: 航空工业出版社, 2000: 189-190.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  158
  • HTML浏览量:  57
  • PDF量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 网络出版日期:  2022-12-30

目录

    /

    返回文章
    返回