留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收缩型双射流孔气膜冷却特性与损失机理

康忠 李国庆 张深 王晓东 张燕峰 卢新根

康忠, 李国庆, 张深, 等. 收缩型双射流孔气膜冷却特性与损失机理[J]. 航空动力学报, 2023, 38(2):335-343 doi: 10.13224/j.cnki.jasp.20210202
引用本文: 康忠, 李国庆, 张深, 等. 收缩型双射流孔气膜冷却特性与损失机理[J]. 航空动力学报, 2023, 38(2):335-343 doi: 10.13224/j.cnki.jasp.20210202
KANG Zhong, LI Guoqing, ZHANG Shen, et al. Film cooling characteristics and loss mechanism of contracted double-jet hole[J]. Journal of Aerospace Power, 2023, 38(2):335-343 doi: 10.13224/j.cnki.jasp.20210202
Citation: KANG Zhong, LI Guoqing, ZHANG Shen, et al. Film cooling characteristics and loss mechanism of contracted double-jet hole[J]. Journal of Aerospace Power, 2023, 38(2):335-343 doi: 10.13224/j.cnki.jasp.20210202

收缩型双射流孔气膜冷却特性与损失机理

doi: 10.13224/j.cnki.jasp.20210202
基金项目: 国家自然科学基金(51976214)
详细信息
    作者简介:

    康忠(1995-),男,硕士生,主要从事涡轮叶片气膜冷却研究

    通讯作者:

    李国庆(1981-),男,研究员,博士,主要从事航空发动机气动与传热研究。E-mail:liguoqing@iet.cn

  • 中图分类号: V231.1

Film cooling characteristics and loss mechanism of contracted double-jet hole

  • 摘要:

    在兼顾气膜冷却效率的条件下,为了降低气膜冷却带来的气动损失,采用数值模拟的方法研究了双射流孔和收缩型双射流孔的气膜冷却特性。对比分析了不同吹风比(0.5~2.0)工况下气膜冷却效率和损失分布规律。结果表明:当吹风比高于1.0时,收缩型双射流孔促进冷气横向发展,冷却效率提高;当吹风比增加到2.0时,收缩型双射流孔可以防止冷气吹离壁面。与双射流孔相比,收缩型双射流孔入口冷气均匀加速,消除了孔内低速区造成的堵塞,流场趋于均匀,孔内损失明显降低,从而整体上降低了气膜冷却引起的总压损失。

     

  • 图 1  计算域模型

    Figure 1.  Computational domain model

    图 2  气膜孔结构示意图

    Figure 2.  Schematic of film cooling configuration

    图 3  数值模拟网格

    Figure 3.  Numerical simulation grids

    图 4  实验与数值模拟结果对比

    Figure 4.  Comparison between numerical and experimental result

    图 5  网格无关性验证

    Figure 5.  Grid independence study

    图 6  横向平均气膜冷却效率

    Figure 6.  Laterally averaged film cooling effectiveness

    图 7  反肾型涡对理想形状

    Figure 7.  Idealized shape of the anti-kidney vortex pair

    图 8  DJFC与DJFC7绝热气膜冷却效率分布

    Figure 8.  Adiabatic film cooling effectiveness distribution for DJFC and DJFC7

    图 9  X/D截面总温分布与二次流(M=1.0)

    Figure 9.  Total temperature distribution and secondary flow at X/D plane (M=1.0)

    图 10  DJFC与DJFC7总压损失系数对比

    Figure 10.  Comparison of the total pressure loss coefficient of DJFC and DJFC7

    图 11  DJFC和DJFC7的$\zeta_{p,{\rm{hole}}}$$\zeta_{p,{\rm{mix}}}$对比

    Figure 11.  Comparison of $\zeta_{p,{\rm{hole}}}$ and $\zeta_{p,{\rm{mix}}}$ of DJFC and DJFC7

    图 12  气膜孔中心面马赫数与矢量云图

    Figure 12.  Calculated Mach number distribution with flow vectors at center plane of film cooling holes

    表  1  边界条件设置

    Table  1.   Boundary conditions

    边界条件设计值
    冷气入口总温 Ttc/K290
    主流入口总压 ptg/kPa128
    主流入口马赫数 Ma0.6
    主流出口静压 pout/kPa96
    总温比 Ttc/Ttg0.54
    密度比 ρc/ρg1.8
    吹风比 M0.5~2.0
    下载: 导出CSV

    表  2  Hole1与Hole2吹风比

    Table  2.   Calculated blowing ratios of Hole1 and Hole2

    模型MHole1Hole2Mav
    DJFC0.50.5480.4280.488
    1.00.9920.9660.979
    1.51.4731.4851.479
    2.01.9771.9811.979
    DJFC70.50.5940.3860.490
    1.01.0170.9530.985
    1.51.5011.4571.479
    2.01.9931.9631.978
    下载: 导出CSV
  • [1] GOLDSTEIN R J,ECKERT E,BURGGRAF F. Effects of hole geometry and density on three-dimensional film cooling[J]. International Journal of Heat & Mass Transfer,2015,17(5): 595-607.
    [2] SCHMIDT D L,SEN B,BOGARD D G. Film cooling with compound angle holes: adiabatic effectiveness[J]. Journal of Turbomachinery,1996,118(4): 807-813. doi: 10.1115/1.2840938
    [3] GRITSCH M,SCHULZ A,WITTIG S. Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits[J]. Journal of Turbomachinery,1998,120(3): 549-556. doi: 10.1115/1.2841752
    [4] FRIC T F,ROSHKO A. Vortical structure in the wake of a transverse jet[J]. Journal of Fluid Mechanics,1994,279: 1-47. doi: 10.1017/S0022112094003800
    [5] KUSTERER K, BOHN D, SUGIMOTO T, et al. Influence of blowing ratio on the double-jet ejection of cooling air[R]. ASME Paper GT2007-27301, 2007.
    [6] 李润东,李明春,贺业光,等. 射流角度对姊妹孔气膜冷却效果影响实验研究[J]. 推进技术,2020,41(8): 1765-1772. doi: 10.13675/j.cnki.tjjs.190448

    LI Rundong,LI Mingchun,HE Yeguang,et al. Experimental study on effects of injection angles on film cooling performance of sister holes[J]. Journal of Propulsion Technology,2020,41(8): 1765-1772. (in Chinese) doi: 10.13675/j.cnki.tjjs.190448
    [7] 刘聪,朱惠人,付仲议,等. 涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J]. 推进技术,2016,37(6): 1142-1150. doi: 10.13675/j.cnki.tjjs.2016.06.019

    LIU Cong,ZHU Huiren,FU Zhongyi,et al. Experimental study of film cooling characteristics for dust-pan shaped holes on suction side in turbine guide vane[J]. Journal of Propulsion Technology,2016,37(6): 1142-1150. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.06.019
    [8] XU Qingzong,DU Qiang,WANG Pei,et al. Computational study of film cooling and flowfields on a stepped vane endwall with a row of cylindrical hole and interrupted slot injections[J]. International Journal of Heat and Mass Transfer,2019,134: 796-806. doi: 10.1016/j.ijheatmasstransfer.2019.01.093
    [9] 张盛昌,张靖周,谭晓茗. 利用上游沙丘形斜坡增强气膜冷却[J]. 航空动力学报,2020,35(5): 973-982. doi: 10.13224/j.cnki.jasp.2020.05.009

    ZHANG Shengchang,ZHANG Jingzhou,TAN Xiaoming. Film cooling enhancement by using upstream sand-dune-shaped ramp[J]. Journal of Aerospace Power,2020,35(5): 973-982. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.05.009
    [10] KUSTERER K, ELYAS A, BOHN D, et al. Film cooling effectiveness comparison between shaped- and double jet film cooling holes in a row arrangement[R]. ASME Paper GT2010-22604, 2010
    [11] YAO Jiaxu, XU Jin, ZHANG Ke, et al. Interaction of flow and film-cooling effectiveness between double-jet film-cooling holes with various spanwise distances[R]. ASME Paper GT2017-63740, 2017.
    [12] YAO Jiaxu, LEI Jiang, WU Junmei, et al. Effects of streamwise distance and density ratio on film-cooling effectiveness for double-jet film-cooling on a flat plate[R]. ASME Paper GT2018-75456, 2018.
    [13] KUSTERER K, ELYAS A, BOHN D, et al. Double-Jet film-cooling for highly efficient film-cooling with low blowing ratios[R]. ASME Paper GT2008-50073, 2008.
    [14] 王文三,唐菲,赵庆军,等. 新型双射流冷却孔对气膜冷却效率影响的研究[J]. 工程热物理学报,2011,32(8): 1291-1294.

    WANG Wensan,TANG Fei,ZHAO Qingjun,et al. An investigation of the effect of new-type double-jet film cooling (DJFC) hole on film cooling effectiveness[J]. Journal of Engineering Thermophysics,2011,32(8): 1291-1294. (in Chinese)
    [15] HARTSEL J. Prediction of effects of mass-transfer cooling on the blade-row efficiency of turbine airfoils[R]. San Diego: In Proceedings of the 10th Aerospace Sciences Meeting, 1972.
    [16] ITO S,ECKERT E R G,GOLDSTEIN R J. Aerodynamic loss in a gas turbine stage with film cooling[J]. Journal of Engineering for Power,1980,102(4): 964-970. doi: 10.1115/1.3230368
    [17] DAY C, OLDFIELD M, LOCK G D, et al. Efficiency measurements of an annular nozzle guide vane cascade with different film cooling geometries[R]. ASME Paper 98-GT-538, 1998.
    [18] YOUNG J B,HORLOCK J H. Defining the efficiency of a cooled turbine[J]. Journal of Turbomachinery,2006,128(4): 658-667. doi: 10.1115/1.2218890
    [19] YOUNG J B,WILCOCK R C. Modeling the air-cooled gas turbine: Part 1 general thermodynamics[J]. Journal of Turbomachinery,2002,124(2): 207-213. doi: 10.1115/1.1415037
    [20] YOUNG J B,WILCOCK R C. Modeling the air-cooled gas turbine: Part 2 coolant flows and losses[J]. Journal of Turbomachinery,2002,124(2): 214-221. doi: 10.1115/1.1415038
    [21] LIM C H, PULLAN G, IRELAND P. Influence of film cooling hole angles and geometries on aerodynamic loss and net heat flux reduction[R]. ASME Paper GT2011-45721, 2011.
    [22] LIM C H, PULLAN G, NORTHALL J. Estimating the loss associated with film cooling for a turbine stage[R]. ASME Paper GT2010-22327, 2010.
    [23] DENTON J D. Loss mechanisms in turbomachines[J]. Trans Asme Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299
    [24] 高扬,刘建军,安柏涛. 主流马赫数对不同气膜孔结构冷却效果及气动损失影响研究[J]. 燃气轮机技术,2015,28(2): 15-20. doi: 10.3969/j.issn.1009-2889.2015.02.003

    GAO Yang,LIU Jianjun,AN Baitao. Influence of mainstream Mach number on cooling effectiveness and aerodynamic losses of different film cooling configurations[J]. Gas Turbine Technology,2015,28(2): 15-20. (in Chinese) doi: 10.3969/j.issn.1009-2889.2015.02.003
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  310
  • HTML浏览量:  54
  • PDF量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 网络出版日期:  2022-12-21

目录

    /

    返回文章
    返回