留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变转速刚性旋翼性能与载荷风洞试验

刘士明 应旭成 李登安 邵松

刘士明, 应旭成, 李登安, 等. 变转速刚性旋翼性能与载荷风洞试验[J]. 航空动力学报, 2023, 38(2):354-363 doi: 10.13224/j.cnki.jasp.20210217
引用本文: 刘士明, 应旭成, 李登安, 等. 变转速刚性旋翼性能与载荷风洞试验[J]. 航空动力学报, 2023, 38(2):354-363 doi: 10.13224/j.cnki.jasp.20210217
LIU Shiming, YING Xucheng, LI Deng’an, et al. Wind tunnel test of variable speed rigid rotor performance and load[J]. Journal of Aerospace Power, 2023, 38(2):354-363 doi: 10.13224/j.cnki.jasp.20210217
Citation: LIU Shiming, YING Xucheng, LI Deng’an, et al. Wind tunnel test of variable speed rigid rotor performance and load[J]. Journal of Aerospace Power, 2023, 38(2):354-363 doi: 10.13224/j.cnki.jasp.20210217

变转速刚性旋翼性能与载荷风洞试验

doi: 10.13224/j.cnki.jasp.20210217
基金项目: 旋翼空气动力学重点实验室研究开放课题(RAL20200403)
详细信息
    作者简介:

    刘士明(1991-),男,高级工程师,博士,主要从事直升机旋翼设计研究

  • 中图分类号: V211.47

Wind tunnel test of variable speed rigid rotor performance and load

  • 摘要:

    为研究转速变化对旋翼性能与振动载荷的影响,研制了一副无铰式刚性缩比模型旋翼,开展动力学和马赫数相似的悬停试验与风洞试验。试验研究不同旋翼拉力和吹风速度时变旋翼转速对配平、性能、桨叶与拉杆载荷、桨毂载荷等多个方面的影响,以性能和交变载荷的重复性与周期性证明试验结果是可信的。结果表明:降转速可降低旋翼悬停和前飞状态的需用功率,且拉力越低效果越明显;降转速对桨毂振动载荷影响不明显,但增加了配平所需的周期变距操纵,会增加桨叶与变距拉杆的旋翼转速频率振动载荷,对旋转部件疲劳寿命不利;变旋翼转速应避开旋翼固有频率,防止因共振而导致交变载荷增大。

     

  • 图 1  刚性旋翼模型

    Figure 1.  Rigid rotor model

    图 2  旋翼固有频率

    Figure 2.  Rotor natural frequencies

    图 3  风洞中的旋翼试验模型

    Figure 3.  Model rotor in the wind tunnel

    图 4  拉力系数-总距重复性(ω=100%Ω

    Figure 4.  Repeatability of thrust coefficient with collective pitch (ω=100%Ω

    图 5  拉力系数与悬停效率关系重复性(ω=100%Ω

    Figure 5.  Repeatability of relation between thrust coefficient and figure of merit (ω=100%Ω

    图 6  不同转速的拉力系数-总距曲线

    Figure 6.  Curve of thrust coefficient with collective pitch of variable speed rotor

    图 7  不同转速的悬停效率-拉力系数曲线

    Figure 7.  Curve of figure of merit with thrust coefficient of variable speed rotor

    图 8  不同转速的功率-拉力曲线

    Figure 8.  Curve of power required with thrust of variable speed rotor

    图 9  不同旋翼转速的悬停效率-拉力曲线

    Figure 9.  Curve of figure of merit with thrust for different speed rotor

    图 10  桨叶摆振方向应变频谱幅值

    Figure 10.  Frequency spectrum amplitude of lead-lag direction strain on blade

    图 11  不同ω功率随风洞速度关系

    Figure 11.  Power versus wind tunnel speed for varying ω

    图 12  不同ωL/D随风洞速度关系

    Figure 12.  L/D versus wind tunnel speed for varying ω

    图 13  不同风速操纵角度随旋转速度关系

    Figure 13.  Control angle versus rotating speed for varying wind speed

    图 14  振动载荷周期性

    Figure 14.  Periodicity of vibratory load

    图 15  振动载荷重复性(ω=70%Ωμ=0.18)

    Figure 15.  Repeatability of vibratory load (ω=70%Ωμ=0.18)

    图 16  不同转速桨叶弯矩与拉杆载荷谐波幅值

    Figure 16.  Blade bending moment and pitch link load harmonic amplitudes for various rotating speed

    图 17  不同ω桨叶摆振弯矩(去除均值)

    Figure 17.  Chordwise bending moment for varying ω (mean removed)

    图 18  不同ω桨毂载荷谐波幅值

    Figure 18.  Hub load harmonic amplitudes for varying ω

    图 19  不同拉力桨毂侧向载荷谐波幅值

    Figure 19.  Hub lateral load harmonic amplitudes for various thrust

    图 20  不同拉力桨毂侧向载荷(去除均值)

    Figure 20.  Hub lateral load for various thrust (mean removed)

    表  1  旋翼模型参数

    Table  1.   Rotor model parameters

    参数数值及说明
    旋翼形式无铰式刚性旋翼
    桨叶片数 k4
    旋翼半径R/m2
    额定转速Ω/(r/min)1 050
    实度σ0.0712
    预锥角 βp/(°)4.5
    下载: 导出CSV

    表  2  翼型和弦长分布

    Table  2.   Distribution of airfoil and chord

    位置翼型弦长/m
    0.2R21%厚度(NR121)0.149
    0.454R15%厚度(NR115)0.128
    0.554R~0.765R12%厚度(NR112)0.119~0.101
    0.865R~0.965R9%厚度(NR109)0.093~0.084
    0.965R~1R9%厚度(NR109)0.084~0.045
    (抛物后掠)
    下载: 导出CSV

    表  3  模型旋翼结构参数

    Table  3.   Structural parameter of rotor model

    序号桨叶分段/
    mm
    挥舞刚度/
    (N·m2
    摆振刚度/
    (N·m2
    扭转刚度/
    (N·m2
    线密度/
    (kg/m)
    挥舞惯量/
    (g·m)
    摆振惯量/
    (g·m)
    160~254200001200016000.08.0008.0008.000
    2254~2821136836984515575.07.6150.66810.070
    3282~40048202577696589.75.1290.4155.061
    4400~6501612574762115.81.6300.1292.076
    5650~1050740329611077.42.1780.0701.942
    61050~125020914541291.70.8270.0190.608
    71250~16502088914208.91.1790.0180.660
    81650~190068402090.10.8090.0100.344
    91900~200039220147.01.1460.0090.288
    下载: 导出CSV

    表  4  桨叶固有频率

    Table  4.   Blade natural frequencies

    模态实测值/Hz计算值/Hz误差/%
    静态β1(仅桨叶)6.385.816−8.84
    静态β2(仅桨叶)24.9324.930
    静态ζ1(仅桨叶)38.3037.89−1.07
    静态ζ1(旋翼)21.723.89.7
    额定转速ζ129.529.1−1.4
    下载: 导出CSV

    表  5  变转速对旋翼悬停性能的影响

    Table  5.   Influence of performance of rotor in hover with variable speed

    拉力/N额定转速
    功率/kW
    降转速
    功率/kW
    节省
    功率/kW
    功率
    相对变化/%
    1 50024.614.61040.7
    2 00030.621.49.230.1
    2 50037.629.87.820.7
    3 00045.639.46.213.6
    3 50055.049.55.510.0
    下载: 导出CSV
  • [1] JASON H S, FARHAN G. An investigation of variable speed rotor RPM on performance and trim[C]// Proceedings of the American Helicopter Society 64th Annual Forum. Montreal, Canada: the American Helicopter Society International, 2008: 278.1-278.9.
    [2] 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术,2012(3): 9-14. doi: 10.3969/j.issn.1007-5453.2012.03.003

    Deng Jinghui. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology,2012(3): 9-14. (in Chinese) doi: 10.3969/j.issn.1007-5453.2012.03.003
    [3] 方永红. 无人直升机系统发展展望[J]. 航空科学技术,2021,32(1): 35-40.

    FANG Yonghong. Development prospect of unmanned helicopter system[J]. Aeronautical Science & Technology,2021,32(1): 35-40. (in Chinese)
    [4] 陈铭,武梅丽文,曹飞. 复合式直升机技术特点及发展概述[J]. 航空制造技术,2017,60(21): 94-101.

    CHEN Ming,WU Meiliwen,CAO Fei. Technology and development overview for compound helicopter[J]. Aeronautical Manufacturing Technology,2017,60(21): 94-101. (in Chinese)
    [5] GRAHAM M B D,INDJERT C. Aeromechanics of a slowed rotor[J]. Journal of the American Helicopter Society,2015,60(3): 1-13.
    [6] ANUBHAV D,HYEOSOO YEO,THOMAS R N. Experimental investigation and fundamental understanding of a slowed UH-60A rotor at high advance ratios[J]. Journal of the American Helicopter Society,2013,58(2): 1-17.
    [7] BEN B, INDERJIT C. Wind tunnel testing for performance and vibratory loads of a variable-speed mach-scale rotor[C]// Proceedings of the American Helicopter Society 67th Annual Forum. Virginia Beach, Virginia: the American Helicopter Society International, 2011: 137.1-137.14.
    [8] 韩东. 变转速旋翼直升机性能和配平研究[J]. 航空学报,2012,34(6): 1241-1248.

    HAN Dong. Study on the performance and trim of a helicopter with a variable speed rotor[J]. Acta Aeronautica et Astronautica Sinica,2012,34(6): 1241-1248. (in Chinese)
    [9] 刘士明,杨卫东,董凌华,等. 优化转速旋翼性能分析与应用[J]. 南京航空航天大学学报,2014,46(6): 888-894. doi: 10.3969/j.issn.1005-2615.2014.06.011

    LIU Shiming,YANG Weidong,DONG Linghua,et al. Performance investigation and applications of optimum speed rotors[J]. Journal of Nanjing University of Aeronautics & Astronautics,2014,46(6): 888-894. (in Chinese) doi: 10.3969/j.issn.1005-2615.2014.06.011
    [10] 吴裕平,董凌华,解望. 变转速旋翼直升机的续航性能与变速策略[J]. 南京航空航天大学学报,2018,50(2): 193-199. doi: 10.16356/j.1005-2615.2018.02.007

    WU Yuping,DONG Linghua,XIE Wang. Endurance performance and rotational speed change of variable speed rotor helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics,2018,50(2): 193-199. (in Chinese) doi: 10.16356/j.1005-2615.2018.02.007
    [11] 池骋,陈仁良. 旋翼转速变化对直升机需用功率、配平、振动及噪声的影响分析[J]. 南京航空航天大学学报,2018,50(5): 629-639. doi: 10.16356/j.1005-2615.2018.05.007

    CHI Cheng,CHEN Renliang. Influence of rotor speed variation on required power, trim, vibration and noise of helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics,2018,50(5): 629-639. (in Chinese) doi: 10.16356/j.1005-2615.2018.05.007
    [12] 余智豪,周云,宋彬. 大前进比变转速旋翼气弹动力学建模与载荷特性分析[J]. 振动与冲击,2021,40(4): 17-22.

    YU Zhihao,ZHOU Yun,SONG Bin. Aeroelastic modeling and load analysis of a variable speed rotor in high advance ratio[J]. Journal of Vibration and Shock,2021,40(4): 17-22. (in Chinese)
    [13] 杨悦. 变旋翼转速直升机飞行特性研究[D]. 南京: 南京航空航天大学, 2017.

    YANG Yue. Research on helicopter flight characteristics of variable speed rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [14] 孙宇. 变转速刚性旋翼载荷分析与试验研究[D]. 南京: 南京航空航天大学, 2015.

    SUN Yu. Loads analysis of variable speed rigid rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [15] 吴凯华, 吴裕平, 孙宇, 等. 变转速刚性旋翼风洞试验研究[C]// 第32届全国直升机年会. 四川 绵阳: 中国航空学会直升机分会, 2016: 2.21-2.24.
    [16] 黄东盛,吴世杰,韩东. 变转速模型旋翼挥舞摆振低阶载荷试验研究[J]. 航空学报,2016,37(3): 873-882.

    HUANG Dongsheng,WU Shijie,HAN Dong. Experimental investigation of flapwise and lagwise lower harmonic loads of a variable speed model rotor[J]. Acta Aeronautica et Astronautica Sinica,2016,37(3): 873-882. (in Chinese)
    [17] 徐明,韩东,李建波. 变转速旋翼气动特性分析及试验研究[J]. 航空学报,2013,34(9): 2047-2056.

    XU Ming,HAN Dong,LI Jianbo. Analysis and experimental investigation on the aerodynamic characteristics of variable speed rotor[J]. Acta Aeronautica et Astronautica Sinica,2013,34(9): 2047-2056. (in Chinese)
    [18] WENBIN Y,VITALI V V,DEWEY H H,et al. Validation of the variational asymptotic beam sectional analysis (VABS)[J]. AIAA Journal,2002,40(10): 2105-2113. doi: 10.2514/2.1545
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  272
  • HTML浏览量:  37
  • PDF量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 网络出版日期:  2023-01-09

目录

    /

    返回文章
    返回