Uncertainty analysis of compressor temperature rise efficiency measurement based on thermocouple inversed connection
-
摘要:
针对轴流压气机气动性能试验中存在的低压比温升效率评估问题,构建了常规测温方法与反串测温方法测量的温升效率不确定度数学分析模型,并采用某单级压气机真实试验数据进行了两种测温方法不确定度的对比分析。结果表明:相比常规测温方法,反串测温方法不仅消除了热电偶冷端环境温度测量引入的不确定度,还大幅降低了进口温度测量引入的不确定度,使温升效率测量不确定度减小幅度在30%以上。
Abstract:In view of the problem of evaluating the temperature rise efficiency under low pressure ratio in the aerodynamic performance experiments of axial flow compressor,the uncertainty mathematics analysis models of temperature rise efficiency measured by the conventional method and a method with inversed connection of thermocouple were established respectively,and the uncertainties of temperature rise efficiency measured by two methods were analyzed comparatively with real experimental data of a single stage compressor.The results showed that,compared with conventional method,the uncertainty of temperature rise efficiency with inversed connection of thermocouple was greatly reduced by more than 30%,by eliminating the uncertainty introduced by the cold end temperature measurement of thermocouple and reducing the uncertainty introduced by the inlet temperature measurement.
-
表 1 温升效率相对标准不确定度分量
Table 1. Relative standard uncertainty component of temperature rise efficiency
转速 常规方法 反串方法 相对流量 u(π) u(t1,i) u(Δti) u(tref) ur(η1) 相对流量 u(π) u(t1,i) u(Δti) u(tref) ur(η2) 50%nd 0.369 6 0.004 7 0.024 0 0.019 1 0.002 7 0.031 1 0.371 4 0.004 7 0.002 3 0.018 0 0.018 8 60%nd 0.425 0 0.003 2 0.016 3 0.012 4 0.001 8 0.020 8 0.450 9 0.003 4 0.002 2 0.012 8 0.013 5 70%nd 0.505 6 0.002 4 0.012 8 0.009 3 0.001 3 0.016 0 0.491 1 0.002 4 0.002 2 0.008 8 0.009 4 75%nd 0.564 4 0.001 9 0.010 4 0.007 3 0.001 0 0.012 9 0.565 7 0.001 9 0.002 2 0.007 3 0.007 8 80%nd 0.599 0 0.001 4 0.007 8 0.005 0 0.000 7 0.009 4 0.638 5 0.001 4 0.002 1 0.005 4 0.006 0 表 2 温升效率相对标准不确定度分量的权重系数
Table 2. Weight coefficient of each relative standard uncertainty component of temperature rise efficiency
方法 转速 相对流量 ζ/% u(π) u(t1,i) u(Δti) u(tref) 常规方法 50%nd 0.369 6 2.28 59.55 37.72 0.75 60%nd 0.425 0 2.37 61.41 35.54 0.75 70%nd 0.505 6 2.25 64.00 33.79 0.66 75%nd 0.564 4 2.17 65.00 32.02 0.60 80%nd 0.599 0 2.22 68.85 28.29 0.55 反串方法 50%nd 0.371 4 6.25 1.50 91.67 60%nd 0.450 9 6.34 2.66 89.90 70%nd 0.491 1 6.52 5.48 87.64 75%nd 0.565 7 5.93 7.96 87.59 80%nd 0.638 5 5.44 12.25 81.00 -
[1] 楚武利,刘前智,胡春波.航空叶片机原理[M].西安:西北工业大学出版社,2009. [2] 王琦,马云翔,赵铎,等.可控扩散叶型正问题设计方法的研究与应用[J].热能动力工程,2014,29(4):355⁃360.WANG Qi,MA Yunxiang,ZHAO Duo,et al.Study and applications of the methods for designing the positive problems relating to the controllable diffusion blade profile[J].Journal of Engineering for Thermal Energy and Power,2014,29(4):355⁃360.(in Chinese) [3] 李清华,刘昭威.可控扩散叶型全3维黏性反问题设计方法[J].航空发动机,2019,45(1):6⁃11.LI Qinghua,LIU Zhaowei.Fully three⁃dimensional viscous inverse design method of controlled diffusion airfoil[J].Aeroengine,2019,45(1):6⁃11.(in Chinese) [4] 李清华,安利平,徐林,等.高负荷压气机设计技术探索研究与试验验证[J].航空学报,2017,35(1):1⁃12.LI Qinghua,AN Liping,XU Lin,et al.Exploratory research and test verification of high load compressor design technique[J].Acta Aeronautica et Astronautica Sinica,2017,35(1):1⁃12.(in Chinese) [5] 赵斌,刘宝杰.跨声串列转子及前后叶片匹配特性分析[J].航空学报,2011,32(6):978⁃987.ZHAO Bin,LIU Baojie.Effects of relative position of forward and aft blades on performance of tandem rotor[J].Acta Aeronautica et Astronautica Sinica,2011,32(6):978⁃987.(in Chinese) [6] 刘波,周新海,严汝群.轴流压气机可控扩散叶型的数值优化设计[J].航空动力学报,1991,6(1):9⁃12.LIU Bo,ZHOU Xinhai,YAN Ruqun.Numerical optimization program for design controlled diffusion compressor bladeing[J].Journal of Aerospace Power,1991,6(1):9⁃12.(in Chinese) [7] ABERNETHY R B,THOMPSON J W.Uncertainty in gas turbine measurements[R].AIAA 73⁃1230,1973. [8] BRUN K,KURZ R.Measurement uncertainties encountered during gas turbine driven compressor field testing[R].ASME Paper 98⁃GT⁃1,1998. [9] BETTOCCHI R,PINELLI M.A multi⁃stage compressor test facility:uncertainty analysis and preliminary test results[R].ASME Paper GT2003⁃38397,2003. [10] MA H W,LI S H,WEI W.Effects of probe support on the flow field of a low⁃speed axial compressor[J].Journal of Thermal Science,2014,23(2):120⁃126. [11] 马宏伟,项乐.探针支杆对压气机转子性能及流场影响的数值模拟研究[J].推进技术,2016,37(12):2288⁃2295.MA Hongwei,XIANG Le.Numerical investigation of effects of probe support on performance and flow field of compressor rotor[J].Journal of Propulsion Technology,2016,37(12):2288⁃2295.(in Chinese) [12] 杨荣菲,赵建通,向宏辉,等.进口探针支杆对1.5级压气机气动性能的影响[J].推进技术,2017,38(5):1038⁃1046.YANG Rongfei,ZHAO Jiantong,XIANG Honghui,et al.Effects of inlet probe support on aerodynamic performance of 1.5⁃stage compressor[J].Journal of Propulsion Technology,2017,38(5):1038⁃1046.(in Chinese) [13] 高杰,向宏辉,代秋林,等.探针支杆尾迹特性对压气机叶栅性能的影响[J].燃气涡轮试验与研究,2019,32(6):6⁃13.GAO Jie,XIANG Honghui,DAI Qiulin,et al.Effect of probe support wake characteristics on compressor cascade performance[J].Gas Turbine Experiment and Research,2019,32(6):6⁃13.(in Chinese) [14] 郭昕,崔健,顾杨.压气机试验特性的修正方法研究[J].燃气涡轮试验与研究,2002,15(1):11⁃13.GUO Xin,CUI Jiang,GU Yang.An investigation on correction methods of compressor test characteristics[J].Gas Turbine Experiment and Research,2002,15(1):11⁃13.(in Chinese) [15] 崔济亚.压气机效率的正确变比热计算[J].推进技术,1995,16(2):1⁃3.CUI Jiya.Correct calculation of varying specific heat compressor efficiency[J].Journal of Propulsion Technology,1995,16(2):1⁃3.(in Chinese) [16] 任铭林,向宏辉.有关轴流压气机效率问题的探讨[J].燃气涡轮试验与研究,2009,22(4):9⁃14.REN Minglin,XIANG Honghui.Exploration of efficiency in axial compressor[J].Gas Turbine Experiment and Research,2009,22(4):9⁃14.(in Chinese) [17] 向宏辉,王掩刚,高杰,等.轴流压气机效率测量两类影响因素的试验研究[J].燃气涡轮试验与研究,2019,32(3):1⁃7.XIANG Honghui,WANG Yangang,GAO Jie,et al.Experimental investigation of two effect factors on axial flow compressor efficiency measurement[J].Gas Turbine Experiment and Research,2019,32(3):1⁃7.(in Chinese) [18] 赵全春,段连丰,沈培英.压气机气动性能试验[R].北京:中国航空工业总公司,1995. -