留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效弯掠对转桨扇流动特点与桨距调节规律

李治达 陈翔翔 吴涛 董威

李治达,陈翔翔,吴涛,等.高效弯掠对转桨扇流动特点与桨距调节规律[J].航空动力学报,2022,37(8):1703‑1713. doi: 10.13224/j.cnki.jasp.20210278
引用本文: 李治达,陈翔翔,吴涛,等.高效弯掠对转桨扇流动特点与桨距调节规律[J].航空动力学报,2022,37(8):1703‑1713. doi: 10.13224/j.cnki.jasp.20210278
LI Zhida,CHEN Xiangxiang,WU Tao,et al.Flow characteristics and pitch regulation of high‑efficiency swept⁃curved counter rotating propellers[J].Journal of Aerospace Power,2022,37(8):1703‑1713. doi: 10.13224/j.cnki.jasp.20210278
Citation: LI Zhida,CHEN Xiangxiang,WU Tao,et al.Flow characteristics and pitch regulation of high‑efficiency swept⁃curved counter rotating propellers[J].Journal of Aerospace Power,2022,37(8):1703‑1713. doi: 10.13224/j.cnki.jasp.20210278

高效弯掠对转桨扇流动特点与桨距调节规律

doi: 10.13224/j.cnki.jasp.20210278
基金项目: 

民用飞机专项科研 MJ⁃2017⁃D⁃27

详细信息
    作者简介:

    李治达(1996-),男,硕士生,主要从事航空发动机结冰机理研究。

    通讯作者:

    董威(1970-),男,教授、博士生导师,博士,主要从事航空发动机流动与传热技术研究。E⁃mail:wdong@sjtu.edu.cn

  • 中图分类号: V231.3

Flow characteristics and pitch regulation of high‑efficiency swept⁃curved counter rotating propellers

  • 摘要:

    采用数值计算的方法分析了高亚声速来流条件下弯掠对转桨扇的流动特点,开展了不同自由来流马赫数下的高效对转桨扇桨距调节规律的研究。研究表明:在弯掠桨扇的内部流场,从约30%相对叶高位置处开始形成明显激波结构,但当弯掠桨扇通道内峰值马赫数在1.2及以下时激波强度相对较弱,流动损失在可接受范围。由于桨距角对桨扇的推进效率影响显著,研究提出了可行有效的对转桨扇桨距调节方法,数值计算表明桨扇的推进效率均在75%以上。数值仿真预测的各马赫数下桨扇的推力值表明前叶推力对马赫数的变化更加敏感。

     

  • 图 1  对转桨扇几何模型

    Figure 1.  Geometrical model of the counter rotating propellers

    图 2  对转桨扇计算区域

    Figure 2.  Calculation domain of the counter rotating propellers

    图 3  对转桨扇的表面三维网格(其中一个流道)

    Figure 3.  Three⁃dimensional surface mesh of the counter rotating propellers (one flow channel)

    图 4  来流马赫数为0.6时叶片偏转角度示意图

    Figure 4.  Schematic diagram of blade deflection angle at incoming flow Mach number of 0.6

    图 5  对转桨扇气流速度矢量三角形

    Figure 5.  Airflow velocity vector triangle of counter rotating propellers

    图 6  基于设计点的不同来流马赫数桨距角变化情况

    Figure 6.  Variation of pitch angle at different incoming flow Mach numbers based on design point

    图 7  来流马赫数与对转桨扇桨距角之间的关系

    Figure 7.  Relation between incoming flow Mach number and pitch angle of counter rotating propellers

    图 8  计算结果与试验值的对比[9]

    Figure 8.  Comparison between the calculated results and the experimental values [9]

    图 9  对转桨扇相对马赫数分布

    Figure 9.  Relative Mach number contour of counter rotating propellers

    图 10  子午面流动情况

    Figure 10.  Meridian flow conditions

    图 12  桨扇出口周向速度分布

    Figure 12.  Circumferential velocity distribution of counter rotating propellers outlet

    图 15  三维叶片表面静压分布

    Figure 15.  Static pressure distribution of three‑dimensional blade surface

    图 16  NASA试验测得前叶吸力面静压分布[23]

    Figure 16.  Static pressure distribution of the front blade suction surface tested by NASA[23]

    图 18  来流马赫数与对转桨扇效率之间的关系

    Figure 18.  Relation between inlet Mach number and the efficiency of counter rotating propellers

    图 19  来流马赫数与对转桨扇推力之间的关系

    Figure 19.  Relation between inlet Mach number and thrust of counter rotating propellers

    表  1  对转桨扇的设计指标及相关参数

    Table  1.   Design index and relevant parameters of counter rotating propellers

    参数数值
    环境条件飞行高度/m10 668
    空气温度/℃-54
    空气压力/Pa24 100
    空气密度/(kg/m30.383
    飞行马赫数0.785
    飞行速度/(m/s)232.94
    前排叶片轮毂比0.42
    转速/(r/min)1 000
    叶尖直径/m4.5
    轮毂直径/m1.89
    推力/N14 270
    叶片数12
    后排叶片轮毂比0.42
    转速/(r/min)1 000
    叶尖直径/m4.5
    轮毂直径/m1.89
    推力/N11 794.7
    叶片数10
    下载: 导出CSV

    表  2  对转桨扇桨距调节规律

    Table  2.   Pitch adjustment law of counter rotating propellers

    来流马赫数前叶桨距角/(°)后叶桨距角/(°)
    0.334.2636.69
    0.441.6942.45
    0.547.9447.19
    0.653.1651.12
    0.757.5154.44
    0.78560.6456.78
    0.861.1557.16
    下载: 导出CSV
  • [1] ROHRBACH C,METZGER F.The prop⁃fan:a new look in propulsors[R].Anaheim,California:the 11th Propulsion Conference,1975.
    [2] JI L C,XIANG L,HUANG H B,et al.The revelations from the research about the vaneless counter⁃rotating turbine[R].International Society for Air Breathing Engines,ISABE⁃2003⁃1040,2003.
    [3] 周莉,是介,王占学.开式转子发动机研究进展[J].推进技术,2019,40(9):1921⁃1932.

    ZHOU Li,SHI Jie,WANG Zhanxue.Research pro⁃gress of counter rotating propellers[J].Journal of Propulsion Technology,2019,40(9):1921⁃1932.(in Chinese)
    [4] HAGER R D.Advanced turboprop project[M].Washington D C,U S:National Aeronautics and Space Administration,1988.
    [5] 刘红霞,梁春华.开式转子发动机研制与进展[J].国际航空,2010(4):75⁃77.

    LIU Hongxia,LIANG Chunhua.Development and pro gress of open rotor engine[J].International Aviation,2010(4):75⁃77.(in Chinese)
    [6] 金捷.美国推进系统数值仿真(NPSS)计划综述[J].燃气涡轮试验与研究,2003,16(1):57⁃62.

    JIN Jie.Review of the U.S.Propulsion system numerical simulation (NPSS) program[J].Gas Turbine Experiment and Research,2003,16(1):57⁃62.(in Chinese)
    [7] HENDRICKS E S.Development of an open rotor cycle model in NPSS using a multi⁃design point approach[R].ASME Paper 2011⁃GT⁃46694,2011
    [8] GUYNN M,BERTON J,HENDRICKS E,et al.Initial assess ment of open rotor propulsion applied to an advanced single⁃aisle aircraft[R].AIAA⁃2011⁃7058,2011.
    [9] HENDRICKS E,TONG M.Performance and weight estimates for an advanced open rotor engine[R].AIAA⁃2012⁃3911,2012.
    [10] ALEXIOU A,FRANTZIS C,ARETAKIS N,et al.Contra⁃rotating propeller modelling for open rotor engine performance simulations[R].Seoul:ASME Turbo Expo,2016.
    [11] BELLOCQ P,SETHI V,CAPODANNO S,et al.Advanced 0⁃D performance modelling of counter rotating propellers for multi⁃disciplinary preliminary design assessments of open rotors[R].Dusseldorf,Germany:ASME Turbo Expo,2014.
    [12] BELLOCQ P,GARMENDIA I,SETHI V.Preliminary design assessments of pusher geared counter⁃rotating open rotors:Part Ⅰ low pressure system design choices,engine preliminary design philosophy and modelling methodology[R].Montreal,Canada:ASME Turbo Expo,2015.
    [13] 夏贞锋,杨永.对转开式转子非定常气动干扰特性分析[J].航空动力学报,2014,29(4):835⁃843.

    XIA Zhenfeng,YANG Yong.Analysis of unsteady aerodynamic interference characteristics of counter rotating propellers[J].Journal of Aerospace Power,2014,29(4):835⁃843.(in Chinese)
    [14] 金海波,陈宣亮,覃湘桂.基于Mohring声类比的开转子发动机噪声分析[J].航空动力学报,2018,33(4):785⁃791.

    JIN Haibo,CHEN Xuanliang,QIN Xianggui.Noise Analysis of counter rotating propellers based on Mohring sound analogy[J].Journal of Aerospace Power,2018,33(4):785⁃791.(in Chinese)
    [15] 单鹏.对转螺旋桨/桨扇差动行星齿轮机构动力学设计方法及分析[J].航空动力学报,2017,32(4):1012⁃1017.

    SHAN Peng.Dynamic design method and analysis of counter rotating propellers /paddle fan differential planetary gear mechanism[J].Journal of Aerospace Power,2017,32(4):1012⁃1017.(in Chinese)
    [16] 张帅,余雄庆.面向飞机总体设计的开式转子发动机分析模型[J].航空动力学报,2012,27(8):1801⁃1808.

    ZHANG Shuai,YU Xiongqing.Analysis model of counter rotating propellers for aircraft overall design[J].Journal of Aerospace Power,2012,27(8):1801⁃1808.(in Chinese)
    [17] 周人治,郝玉扬,祁宏斌.开式转子发动机对转桨扇设计[J].燃气涡轮试验与研究,2014,27(1):1⁃5.

    ZHOU Renzhi,HAO Yuyang,QIN Hongbin.Design of open rotor engine with opposite rotor fan[J].Gas Turbine Experiment and Research,2014,27(1):1⁃5.(in Chinese)
    [18] 周人治,祁宏斌.开式转子发动机对转桨扇匹配特性研究[J].航空科学技术,2014(4):69⁃73.

    ZHOU Renzhi,QIN Hongbin.Study on matching characteristics of open rotor engine to rotor fan[J].Aeronautical Science and Technology,2014(4):69⁃73.(in Chinese)
    [19] 刘政良,严明,洪青松.开式转子叶片气动设计研究[J].航空科学技术,2013(6):37⁃40.

    LIU Zhengliang,YAN Ming,HONG Qingsong.Study on aerodynamic design of open rotor blade[J].Aeronautical Science and Technology,2013(6):37⁃40.(in Chinese)
    [20] SULLIVAN T J.Aerodynamic performance of a scale⁃model,counterrotating unducted fan[J].Journal of Turbomachinery,1990,112(4):579⁃586.
    [21] 严成忠.开式转子发动机[M].北京:航空工业出版社,2016.
    [22] 尼克·坎普施缇.压气机动力学[M].张健、杜辉、董威,译.上海:上海交通大学出版社,2021.
    [23] ENVIA E.NASA open rotor noise research[R].Warsaw,Poland:the 14th CEAS⁃ASC Workshop and 5th Scientific Workshop of X3⁃Noise Aeroacoustics of High⁃Speed Aircraft Propellers and Open Rotors,2010.
  • 加载中
图(27) / 表(2)
计量
  • 文章访问数:  44
  • HTML浏览量:  13
  • PDF量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03

目录

    /

    返回文章
    返回