留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵列表面电弧激励控制激波附面层干扰机理

甘甜 王琼

甘甜,王琼.阵列表面电弧激励控制激波附面层干扰机理[J].航空动力学报,2022,37(8):1683‑1691. doi: 10.13224/j.cnki.jasp.20210285
引用本文: 甘甜,王琼.阵列表面电弧激励控制激波附面层干扰机理[J].航空动力学报,2022,37(8):1683‑1691. doi: 10.13224/j.cnki.jasp.20210285
GAN Tian,WANG Qiong.Mechanisms for shock wave boundary layer interaction control using surface arc plasma actuators array[J].Journal of Aerospace Power,2022,37(8):1683‑1691. doi: 10.13224/j.cnki.jasp.20210285
Citation: GAN Tian,WANG Qiong.Mechanisms for shock wave boundary layer interaction control using surface arc plasma actuators array[J].Journal of Aerospace Power,2022,37(8):1683‑1691. doi: 10.13224/j.cnki.jasp.20210285

阵列表面电弧激励控制激波附面层干扰机理

doi: 10.13224/j.cnki.jasp.20210285
基金项目: 

国家自然科学基金 11902360

中国博士后科学基金 2021M702676

详细信息
    作者简介:

    甘甜(1988-),男,讲师,博士,主要从事超声速流动控制研究,超声速无人飞行器设计研究。

  • 中图分类号: V211.7

Mechanisms for shock wave boundary layer interaction control using surface arc plasma actuators array

  • 摘要:

    为了获得阵列表面电弧控制激波/附面层干扰不稳定性机理,开展了高频激励和低频激励的实验研究。综合运用高速纹影、动态压力等先进测试手段和分析方法,揭示阵列电弧等离子体激励的热效应和涡效应特性。结合流动显示和壁面动态压力脉动,深度揭示了控制过程。更为关键的,因为高频激励模式下的激励器处于低功耗状态,这样可以提供稳定的控制效果。基于动态压力频谱分析,发现高频激励下低频不稳定性能量的占比降低12.2%。结合纹影显示,获得高频激励下的涡效应主导机制。

     

  • 图 1  流动问题简化示意图

    Figure 1.  Illustration of the flow problem

    图 2  激励与激波相互作用示意图

    Figure 2.  Schematic of the interaction between plasma actuation and shock wave

    图 3  热气泡演化出的尾迹涡

    Figure 3.  Trailing vortices after the thermal gas bubble

    图 4  涡对激波附面层作用的原理图

    Figure 4.  Schematic diagram for the effect of vortices on shock wave boundary layer interaction

    图 5  风洞示意图

    Figure 5.  Schematic of the wind tunnel

    图 6  实验模型(单位:mm)

    Figure 6.  Schematic of the experimental model (unit:mm)

    图 8  低频激励条件下单次脉冲的电压⁃电流曲线

    Figure 8.  voltage and current trajectory for a single pulse at low⁃frequency mode

    图 11  高频激励下单次脉冲的电压电流曲线

    Figure 11.  Voltage and current trajectory for a single pulse at high⁃frequency actuation

    图 13  100~1 000 kHz的功率谱能量占比

    Figure 13.  Proportion of the spectrum energy from Hz

  • [1] BARTER J W,DOLLING D S.Reduction of fluctuating pressure loads in shock/boundary layer interactions using vortex generators:Part 1[J].AIAA Journal,2014,33(10):1842⁃1849.
    [2] LI Yinghong,WU Yun.Research progress and outlook of flow control and combustion control using plasma actuation[J].Scientia Sinica Technologica,2020,50(10):1252⁃1273.
    [3] ZHU Yifei,WU Yun,JIA Min,et al.Influence of positive slopes on ultrafast heating in an atmospheric nanosecond⁃pulsed plasma synthetic jet[J].Plasma Sources Science and Technology,2015,24(1):15007⁃15019.
    [4] IM S,DO H,CAPPELLI M A.Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow[J].Applied Physics Letters,2010,97(4):1⁃3.
    [5] ZONG Haohua,KOTSONIS M.Formation,evolution and scaling of plasma synthetic jets[J].Journal of Fluid Mechanics,2018,837:147⁃181.
    [6] SAMIMY M,KIM J H,KASTNER J,et al.Active control of high⁃speed and high⁃Reynolds⁃number jets using plasma actuators[J].Journal of Fluid Mechanics,2007,578:305⁃330.
    [7] KIM J H,NISHIHARA M,ADAMOVICH I V,et al.Development of localized arc filament RF plasma actuators for high⁃speed and high Reynolds number flow control[J].Experiments in Fluids,2010,49(2):497⁃511.
    [8] NISHIHARA M,TAKASHIMA K,RICH J W,et al.Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge[J].Physics of Fluids,2011,23(6):101⁃105.
    [9] DUCHMANN A,SIMON B,TROPEA C,et al.Dielectric barrier discharge plasma actuators for in⁃flight transition delay[J].AIAA Journal,2014,52(2):358⁃367.
    [10] NARAYANASWAMY V,RAJA L L,CLEMENS N T.Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed⁃plasma⁃jet actuator[J].Physics of Fluids,2012,24(7):076101⁃076122.
    [11] BABINSKY H.Shock wave boundary layer interactions[M].New York:Cambridge University Press,2011:5⁃6.
    [12] YU W,YI SHIHE,HE L,et al.Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers[J].Chinese Physics B,2014,23(11):384⁃395.
    [13] YU W,YI SHIHE,ZHI C,et al.Experimental investigation on structures of supersonic laminar/turbulent flow over a compression ramp[J].Acta Physica Sinica,2013,62(18):116‑121.
    [14] DOLLING D S,MURPHY M T.Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow field[J].AIAA Journal,1983,21(12):1682⁃1634.
    [15] STEPHAN P,MARTIN M P.Low⁃frequency unsteadiness in shock wave⁃boundary layer interaction[J].Journal of Fluid Mechanics,2012,699:1⁃49.
    [16] SUN Q,LI Y,CHENG B,et al.The characteristics of surface arc plasma and its control effect on supersonic flow[J].Physics Letters A,2014,378(36):2672⁃2682.
    [17] LEONOV S B,YARANTSEV D.Near⁃surface electrical discharge in supersonic airflow:properties and flow control[J].Journal of Propulsion & Power,2012,24(6):1168⁃1181.
    [18] WANG J,LI Y H,CHENG B Q,et al.The mechanism investigation on shock wave controlled by plasma aerodynamic actuation[J].Acta Physica Sinica,2009,58(8):5513‑5519.
    [19] YAN H,LIU F,XU J,et al.Study of oblique shock wave control by surface arc discharge plasma[J].AIAA Journal,2017,56(8):1⁃10.
    [20] GAN T,JIN D,GUO S,et al.Influence of ambient pressure on the performance of an arc discharge plasma actuator[J].Contributions to Plasma Physics,2018,58(4):260⁃268.
    [21] TANG Mengxiao,WU Yun,GUO Shangguang,et al.Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control[J].Physics of fluids,2020,32(7):076101⁃076114.
    [22] TANG M X,YUN W,WANG H Y,et al.Characterization of transverse plasma jet and its effects on ramp induced separation[J].Experimental Thermal and Fluid Science,2018,99:584⁃594.
    [23] 吴云,李应红.等离子体流动控制研究进展与展望[J].航空学报,2015,36(2):381⁃405.

    WU Yun,LI Yinghong.Progress and outlook of plasma flow control[J].Acta Aeronautica et Astronautica Sinica,2015,36(2):381⁃405.(in Chinese)
    [24] ZHANG Zhibo,WU Yun,JIA Min,et al.The multichannel discharge plasma synthetic jet actuator[J].Sensors and Actuators A:Physical,2017,253:112⁃117.
    [25] GAN T,WU Y,SUN Z Z,et al.Shock wave boundary layer interaction controlled by surface arc plasma actuators[J].Physics of fluids,2018,30(5):055107⁃055121.
    [26] CAI C P.Energy deposition/absorption effects on a planar shock wave[J].Journal of Thermopyhsics and Heat Transfer,2007,21(1):252⁃254.
    [27] TANG M X,WU Y,ZONG H H,et al.Experimental investigation of supersonic boundary⁃layer tripping with a spanwise pulsed spark discharge array[J].Journal of Fluid Mechanics,2022,931(16):1‑11.
    [28] ZONG H,KOTSONIS M.Realisation of plasma synthetic jet array with a novel sequential discharge[J].Sensors and Actuators A,2017,266:314⁃317.
    [29] ZHANG Z,WU Y,SUN Z,et al.Experimental research on multichannel discharge circuit and multi⁃electrode plasma synthetic jet actuator[J].Journal of Physics D:Applied Physics,2017,50(16):165205⁃165215.
    [30] 甘甜.脉冲电弧放电等离子体激励器控制激波/附面层干扰不稳定性实验研究[D].西安:空军工程大学,2018.

    GAN Tian.Experimental investigation of shock wave/boundary layer interaction unsteadiness control by using pulsed arc discharge plasma actuator[D].Xi'an:Air Force Engineering University,2018.(in Chinese)
    [31] KELKAR S S,GRIGSBY L L,LANGSNER J.An extension of Parseval's Theorem and its use in calculating transient energy in the frequency domain[J].Industrial Electronics IEEE Transactions on,1983,IE⁃30(1):42⁃45.
  • 加载中
图(24)
计量
  • 文章访问数:  67
  • HTML浏览量:  26
  • PDF量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06

目录

    /

    返回文章
    返回