留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由液体射流冲击高速旋转圆盘的耦合换热

姜乐 刘振侠 吕亚国

姜乐, 刘振侠, 吕亚国. 自由液体射流冲击高速旋转圆盘的耦合换热[J]. 航空动力学报, 2023, 38(2):288-297 doi: 10.13224/j.cnki.jasp.20210322
引用本文: 姜乐, 刘振侠, 吕亚国. 自由液体射流冲击高速旋转圆盘的耦合换热[J]. 航空动力学报, 2023, 38(2):288-297 doi: 10.13224/j.cnki.jasp.20210322
JIANG Le, LIU Zhenxia, LÜ Yaguo. Conjugate heat transfer of free liquid jet impinging on high-speed rotating disk[J]. Journal of Aerospace Power, 2023, 38(2):288-297 doi: 10.13224/j.cnki.jasp.20210322
Citation: JIANG Le, LIU Zhenxia, LÜ Yaguo. Conjugate heat transfer of free liquid jet impinging on high-speed rotating disk[J]. Journal of Aerospace Power, 2023, 38(2):288-297 doi: 10.13224/j.cnki.jasp.20210322

自由液体射流冲击高速旋转圆盘的耦合换热

doi: 10.13224/j.cnki.jasp.20210322
基金项目: 国家科技重大专项(J2019-Ⅲ-0023-0067)
详细信息
    作者简介:

    姜乐(1994-),男,博士,主要从事航空发动机润滑系统研究

    通讯作者:

    吕亚国(1980-),男,副教授,博士,主要从事航空发动机润滑系统研究。E-mail:yglu@nwpu.edu.cn

  • 中图分类号: V231.1

Conjugate heat transfer of free liquid jet impinging on high-speed rotating disk

  • 摘要:

    为了研究自由液体射流冲击均匀加热高速旋转圆盘的耦合换热特性,采用数值模拟方法对比分析了固体和流体材料参数对流动及换热的影响。结果表明:不同固体材料参数对应的努塞尔数分布规律相似,同一半径位置处的努塞尔数最大相对偏差不大于10%。与径向温度分布相比,轴向温度差受固体材料导热系数变化的影响更大,铜和泡沫砖的径向最大温差仅相差3倍,而与导热系数近似呈反比的最大轴向温差相差达3471倍。圆盘表面液膜平均径向流速和换热性能随流体黏度的增加而下降。黏度较小的氨和水对应的二次峰值换热强度较一次峰值的增加量超过了15%,黏度较高油类的二次峰值换热强度仅为一次峰值的50%~60%。射流介质采用黏度较小的水和氨时,盘面温度几乎保持不变,最大温差比小于7.86×10−4;黏度较大的油类作为射流介质时在驻点附近的温度变化剧烈,当R/d超过2.5后,温度分布仅有小幅的波动。

     

  • 图 1  自由液体射流冲击均匀加热高速旋转圆盘示意图

    Figure 1.  Schematic diagram of a free liquid jet impinging on a uniformly heated high-speed rotating disk

    图 2  三维数值计算域

    Figure 2.  Three-dimensional numerical calculation domain

    图 3  整体计算域网格划分

    Figure 3.  Computational mesh for the whole domain

    图 4  不同网格数量对应的温度分布比较

    Figure 4.  Comparison of temperature distribution with different grid numbers

    图 5  流固交界面的温度和努塞尔数分布云图

    Figure 5.  Contours of temperature and Nusselt number distribution of the fluid-solid interface

    图 6  平均努塞尔数的实验与数值计算结果的比较

    Figure 6.  Comparison of the experimental and numerical calculation results of the average Nusselt number

    图 7  不同固体材料参数下努塞尔数沿径向的分布

    Figure 7.  Radial distribution of the local Nusselt number with different solid material parameters

    图 8  不同固体材料参数下流固交界面温度沿径向的分布

    Figure 8.  Radial distribution of the fluid-solid interface temperature with different solid material parameters

    图 9  不同固体材料参数对应的圆盘中间截面处的温度分布云图

    Figure 9.  Contours of temperature distribution on the middle section of the disk with different solid material parameters

    图 10  毕渥数和平均努塞尔数随旋转雷诺数的变化关系

    Figure 10.  Variation of Biot number and average Nusselt number with rotating Reynolds number

    图 11  不同旋转雷诺数下圆盘中心温度沿轴向的变化

    Figure 11.  Variation of the central temperature of the disk along the axial direction with different rotating Reynolds numbers

    图 12  不同流体材料参数下努塞尔数沿径向的分布

    Figure 12.  Radial distribution of the Nusselt number withdifferent fluid material parameters

    图 13  不同流体材料参数下液膜厚度沿径向的分布

    Figure 13.  Film thickness distribution along the radial direction with different fluid material parameters

    图 14  不同流体材料参数下液膜平均径向速度分布

    Figure 14.  Average radial velocity distribution of liquid film with different fluid material parameters

    图 15  不同流体材料参数下流固交界面温度沿径向的分布

    Figure 15.  Radial distribution of the fluid-solid interface temperature with different fluid material parameters

    图 16  不同流体材料参数下圆盘中心温度沿轴向的变化

    Figure 16.  Variation of the central temperature of the disk along the axial direction with different fluid material parameters

    表  1  液体射流物性参数

    Table  1.   Physical parameters of liquid jet

    射流
    种类
    密度ρ /
    (kg/m3
    比定压
    热容cp /
    (J/(kg·K))
    导热
    系数λ /
    (W/(m·K))
    动力
    黏度µ /
    (kg/(m·s))
    普朗
    特数
    滑油-1961.818990.15310.02076042257.6
    滑油-2959.820700.14570.0055042178.2
    990.241740.64150.000601353.9
    571.250040.42640.000109691.3
    下载: 导出CSV

    表  2  固体材料物性参数

    Table  2.   Physical parameters of solid materials

    固体种类密度ρ /
    (kg/m3
    比定压热容cp /
    (J/(kg·K))
    导热系数λ /
    (W/(m·K))
    8930386397
    2710902237
    787045578.2
    碳钢784046548.5
    铬钢765046023.2
    硅砖19008580.962
    泡沫砖5009200.108
    下载: 导出CSV

    表  3  不同固体材料对应的轴向和径向最大温差比

    Table  3.   Maximum axial and radial temperature difference ratio with different solid materials

    固体种类轴向最大温差比径向最大温差比
    0.002330.00130
    0.003910.00140
    0.011800.00186
    碳钢0.018560.00218
    铬钢0.039160.00279
    硅砖0.911800.00387
    泡沫砖8.098610.00392
    下载: 导出CSV
  • [1] LALLAVE J C,RAHMAN M M,KUMAR A. Numerical analysis of heat transfer on a rotating disk surface under confined liquid jet impingement[J]. International Journal of Heat and Fluid Flow,2007,28(4): 720-734. doi: 10.1016/j.ijheatfluidflow.2006.09.005
    [2] GOLDSTEIN R J,FRANCHETT M E. Heat transfer from a flat surface to an oblique impinging jet[J]. Journal of Heat Transfer,1988,110(1): 84-90. doi: 10.1115/1.3250477
    [3] STEVENS J,WEBB B W. Local heat transfer coefficients under an axisymmetric, single-phase liquid jet[J]. Journal of Heat Transfer,1991,113(1): 71-78. doi: 10.1115/1.2910554
    [4] CORNARO C,FLEISCHER A S,ROUNDS M,et al. Jet impingement cooling of a convex semi-cylindrical surface[J]. International Journal of Thermal Sciences,2001,40(10): 890-898. doi: 10.1016/S1290-0729(01)01275-3
    [5] SAGOT B,ANTONINI G,CHRISTGEN A,et al. Jet impingement heat transfer on a flat plate at a constant wall temperature[J]. International Journal of Thermal Sciences,2008,47(12): 1610-1619. doi: 10.1016/j.ijthermalsci.2007.10.020
    [6] ZEITOUN O. Heat transfer between a vertical water jet and a horizontal square surface[J]. Experimental Heat Transfer,2012,25(3): 206-221.
    [7] HOSAIN M L,FDHILA R B,DANERYD A. Heat transfer by liquid jets impinging on a hot flat surface[J]. Applied Energy,2016,164: 934-943. doi: 10.1016/j.apenergy.2015.08.038
    [8] SHUKLA A K,DEWAN A. Flow and thermal characteristics of jet impingement on a flat plate for small nozzle to plate spacing using LES[J]. International Journal of Thermal Sciences,2019,145: 106005.1-106005.17. doi: 10.1016/j.ijthermalsci.2019.106005
    [9] 宛鹏翔,范俊,韩省思,等. 冲击射流流动换热超大涡模拟研究[J]. 推进技术,2020,41(10): 2237-2247. doi: 10.13675/j.cnki.tjjs.190420

    WAN Pengxiang,FAN Jun,HAN Xingsi,et al. Very-large eddy simulation of impinging jet flow and heat transfer[J]. Journal of Propulsion Technology,2020,41(10): 2237-2247. (in Chinese) doi: 10.13675/j.cnki.tjjs.190420
    [10] 朱泽辉,聂欣,廖海波. 基于低雷诺数k-ε模型冲击射流传热的数值模拟[J]. 水电能源科学,2021,39(4): 157-160, 203.

    ZHU Zehui,NIE Xin,LIAO Haibo. Numerical simulation of impact jet heat transfer based on low Reynolds number k-ε model[J]. Water Resources and Power,2021,39(4): 157-160, 203. (in Chinese)
    [11] RAVANJI A,ZARGARABADI M R. Effects of pin-fin shape on cooling performance of a circular jet impinging on a flat surface[J]. International Journal of Thermal Sciences,2021,161: 106684.1-106684.11.
    [12] METZGER D E,GROCHOWSKY L. Heat transfer between an impinging jet and a rotating disk[J]. Journal of Heat Transfer,1977,99(4): 663-663. doi: 10.1115/1.3450761
    [13] CARPER H J,SAAVEDRA J J,SUWANPRATEEP T. Liquid jet impingement cooling of a rotating disk[J]. Journal of Heat Transfer,1986,108(3): 540-546. doi: 10.1115/1.3246968
    [14] CHEN Y M,LEE W T,WU S J. Heat (mass) transfer between an impinging jet and a rotating disk[J]. Heat and Mass Transfer,1998,34(2/3): 195-201.
    [15] SHEVCHUK I V. Exact solution of the heat transfer problem for a rotating disk under uniform jet impingement[J]. Fluid Dynamics,2003,38(1): 18-27. doi: 10.1023/A:1023326709819
    [16] RAHMAN M M,LALLAVE J C. Transient conjugate heat transfer during free liquid jet impingement on a rotating solid disk[J]. Numerical Heat Transfer Applications,2009,55(3): 229-251. doi: 10.1080/10407780802628987
    [17] LALLAVE J C,RAHMAN M M. Numerical simulation of transient thermal transport on a rotating disk under partially confined laminar liquid jet impingement[J]. Journal of Heat Transfer,2010,132(5): 052201.1-052201.8.
    [18] HARMON W V, ELSTON C A, WRIGHT L M. Experimental investigation of leading edge impingement under high rotation numbers with racetrack shaped jets[R]. ASME Paper GT2014-26181, 2014.
    [19] 蔡学成,李芹,杨学森,等. 旋转对冲击射流流动及换热影响的数值研究[J]. 航空动力学报,2021,36(1): 70-77. doi: 10.13224/j.cnki.jasp.2021.01.009

    CAI Xuecheng,LI Qin,YANG Xuesen,et al. Numerical investigation on effect of rotation on flow and heat transfer of impinging jets[J]. Journal of Aerospace Power,2021,36(1): 70-77. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.01.009
    [20] 李炎军,徐伟鹏,刘振侠,等. 滑油射流冲击旋转壁面的流动换热数值模拟研究[J]. 推进技术,2022,43(1): 246-253. doi: 10.13675/j.cnki.tjjs.200293

    LI Yanjun,XU Weipeng,LIU Zhenxia,et al. Numerical study of flow and heat transfer characteristics of oil jet impingement on rotating wall[J]. Journal of Propulsion Technology,2022,43(1): 246-253. (in Chinese) doi: 10.13675/j.cnki.tjjs.200293
    [21] MAHDAVI M,SHARIFPUR M,MEYER J P,et al. Thermal analysis of a nanofluid free jet impingement on a rotating disk using volume of fluid in combination with discrete modelling[J]. International Journal of Thermal Sciences,2020,158: 106532.1-106532.13.
    [22] HIRT C W,NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [23] BAGHEL K,SRIDHARAN A,MURALLIDHARAN J S. Experimental and numerical study of inclined free surface liquid jet impingement[J]. International Journal of Thermal Sciences,2020,154: 106389.1-106389.16. doi: 10.1016/j.ijthermalsci.2020.106389
    [24] YAKHOT V,ORSZAG S A. Renormalization-group analysis of turbulence[J]. Physical Review Letters,1986,57(14): 1722-1724. doi: 10.1103/PhysRevLett.57.1722
    [25] BRACKBILL J U,KOTHE D B,ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
    [26] ASTARITA T,CARDONE G. Convective heat transfer on a rotating disk with a centred impinging round jet[J]. International Journal of Heat and Mass Transfer,2008,51(7/8): 1562-1572.
    [27] OZAR B,CETEGEN B M,FAGHRI A. Experiments on heat transfer in a thin liquid film flowing over a rotating disk[J]. Journal of Heat Transfer,2004,126(2): 184-192. doi: 10.1115/1.1652044
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  250
  • HTML浏览量:  86
  • PDF量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 网络出版日期:  2022-11-09

目录

    /

    返回文章
    返回