Elastoplastic analysis of regenerative cooling structure of liquid rocket engine
-
摘要:
为了分析推力室壁应力和变形分布情况,研究推力室失效位置和失效机理,建立了一种弹塑性有限元分析方法。建立推力室一维流动传热模型,为结构弹塑性分析提供输入。进一步建立推力室壁在温度和压强载荷下的二维弹塑性计算模型,分析了在预冷⁃工作⁃后冷⁃关机的工作循环下推力室壁的应力应变响应,比较了温度载荷和压强载荷的作用程度,并预估了推力室使用寿命。结果表明:推力室壁产生的弹塑性变形是由温度载荷和压强载荷共同作用所致,温度载荷起主导作用。推力室内壁冷却通道中心位置最先发生失效破坏,限制了推力室的使用寿命。从计算时间和准确性来说,该方法能够为再生冷却通道的优化设计和性能估算提供参考。
Abstract:In order to analyze the stress and deformation distribution on the thrust chamber wall,and study its failure position and mechanism,an elastoplastic finite element analysis method was established.A one⁃dimensional thermofluid model for the thrust chamber was set up to provide input for the elastoplastic analysis.A two⁃dimensional elastoplastic calculation model for the thrust chamber wall under thermal and pressure load was established.The stress⁃strain response of the thrust chamber wall under the working cycle of pre⁃cooling,hot run,post⁃cooling and relaxation was analyzed.Then,the effect degree of thermal load and pressure load was compared.The life time of the thrust chamber was estimated.The results showed that,the elastoplastic deformation of thrust chamber wall was caused by the combined action of thermal load and pressure load,and the thermal load played a leading role.Failure of the thrust chamber occurred first in the center of the cooling channel,which limited the service lifetime of thrust chamber.In terms of calculation time and accuracy,the proposed method can provide a reference for optimal design and performance estimation of regenerative cooling channels.
-
Key words:
- thrust chamber /
- regenerative cooling /
- cyclic loading /
- failure /
- thermal⁃structural coupling /
- elastoplastic analysis
-
表 2 温度场分析边界条件
Table 2. Boundary condition of thermal loading
热边界条件 预冷/后冷 工作 hf,cool/ 102 000 181 029 Tcool/K 28 129 hg,hot/ 100 61 236 Thot/K 295.15 2 796 hg,out/ 100 100 Tout/K 295.15 295.15 表 3 压力边界条件
Table 3. Boundary condition of pressure loading
压力边界条件 预冷/后冷 工作 pcool/MPa 5.1 43.6 phot/MPa 0.1 12.9 pout/MPa 0.1 0.1 表 4 喉部截面主要参数和通道压强损失计算结果
Table 4. Results of main parameters of throat section and channel pressure loss
参数 流动传热模型 文献[17] 误差/% Twg,t/K 878 833 5.13 /MPa 43.3 43.1 0.46 ∆p/MPa 9.1 8.8 3.30 表 5 内壁各点损失评估
Table 5. Damage assessment at points of inner wall
位置 uc/10-3 ur/10-3 ucr/10-3 ut/10-3 Nt C 58.3 0 19.20 77.50 1 290 D 15.3 9.03 40.60 9.59 104 E 3.1 0 4.23 7.33 136 -
[1] COOK R T,QUENTMEYER R J.Advanced cooling techniques for high pressure hydrocarbon fueled rocket engines[R].AIAA⁃1980⁃1266,1980. [2] POPP M,SCHMIDT G.Rocket engine combustion chamber design concepts for enhanced life[R].AIAA⁃1996⁃3303,1996. [3] 张晟,金平,蔡国飙.推力室冷却通道结构可靠性仿真及参数敏感性分析[J].航空动力学报,2018,33(11):2651⁃2659.ZHANG Sheng,JIN Ping,CAI Guobiao.Structural reliability simulation and parameter sensitivity analysis of cooling channel for thrust chamber[J].Journal of Aerospace Power,2018,33(11):2651⁃2659.(in Chinese) [4] RICCIUS J R,ZAMETAEV E B.Stationary and transient thermal analyses of cryogenic liquid rocket combustion chamber walls[R].AIAA⁃2002⁃3694,2002. [5] RICCIUS J R,ZAMETAEV E B,HAIDN O J.Comparison of 2D and 3D structural FE⁃analyses of LRE combustion chamber walls[R].AIAA⁃2006⁃4365,2006. [6] BADLANI M L,POROWSKI J S.Development of a simplified procedure for rocket engine thrust chamber life prediction with creep[R].NASA⁃CR⁃168261,1984. [7] 康玉东,孙冰.液体火箭发动机推力室内壁三维热强度分析[J].推进技术,2012,33(5):809⁃813.KANG Yudong,SUN Bing.Three dimensional thermomechanical analysis of liquid rocket engine thrust chamber inner wall[J].Journal of Propulsion Technology,2012,33(5):809⁃813.(in Chinese) [8] COOK R T,FRYK E E,NEWELL J F.Space shuttle main engine main combustion chamber life prediction[R].NASA⁃CR⁃168215,1983. [9] BARTZ D R.A simple equation for rapid estimation of rocket nozzle convective heat transfer coefficients[J].Jet Propulsion,1957,27(1):49⁃51. [10] 刘国球.火箭发动机原理[M].北京:宇航出版社,1993. [11] 张忠利.液体火箭发动机热防护[M].北京:国防工业出版社,2016. [12] GRISSOM W M.Liquid film cooling in rocket engines[R].Arlington,US:DTIC Document,DA234288,1991. [13] ESPOSITO J J,ZABORA R F.Trust chamber life prediction:volume 1 mechanical and physical properties of high performance rocket nozzle materials[R].NASA⁃CR⁃134806,1975. [14] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2016. [15] KUHL D,RICCIUS J R,HAIDN O J.Thermomechanical analysis and optimization of cryogenic liquid rocket engines[J].Journal of Propulsion and Power,2002,18(4):835⁃846. [16] ARYA V K,ARNOLDT S M.Viscoplastic analysis of an experimental cylindrical thrust chamber liner[J].AIAA Journal,1992,30(3):781⁃789. [17] 杨成骁,王长辉.液体火箭发动机推力室复合冷却流动与传热研究[J].推进技术,2020,41(7):1520⁃1528.YANG Chengxiao,WANG Changhui.Flow and heat transfer investigation on compound cooling of liquid rocket engine thrust chamber[J].Journal of Propulsion Technology,2020,41(7):1520⁃1528.(in Chinese) [18] 乔生儒,张程煜,王泓.材料的力学性能[M].西安:西北工业大学出版社,2015. -