留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平流层飞艇三叶螺旋桨结构优化方法

尚玲玲 王海峰 口启慧 刘坤澎

尚玲玲,王海峰,口启慧,等.平流层飞艇三叶螺旋桨结构优化方法[J].航空动力学报,2022,37(8):1714‑1723. doi: 10.13224/j.cnki.jasp.20210334
引用本文: 尚玲玲,王海峰,口启慧,等.平流层飞艇三叶螺旋桨结构优化方法[J].航空动力学报,2022,37(8):1714‑1723. doi: 10.13224/j.cnki.jasp.20210334
SHANG Lingling,WANG Haifeng,KOU Qihui,et al.Structure optimization method of three⁃blade propeller for stratospheric airship[J].Journal of Aerospace Power,2022,37(8):1714‑1723. doi: 10.13224/j.cnki.jasp.20210334
Citation: SHANG Lingling,WANG Haifeng,KOU Qihui,et al.Structure optimization method of three⁃blade propeller for stratospheric airship[J].Journal of Aerospace Power,2022,37(8):1714‑1723. doi: 10.13224/j.cnki.jasp.20210334

平流层飞艇三叶螺旋桨结构优化方法

doi: 10.13224/j.cnki.jasp.20210334
详细信息
    作者简介:

    尚玲玲(1997-),女,硕士生,主要研究方向为飞行器总体设计、结构设计。E⁃mail:sll376189891@163.com

  • 中图分类号: V228

Structure optimization method of three⁃blade propeller for stratospheric airship

  • 摘要:

    为实现螺旋桨轻质量和高固有频率之间的权衡设计,发展了1种桨叶对称削层结构的分区优化方法。为拓宽其高效率的速度和高度范围,应采用变桨距技术,需要设计圆柱形桨叶根部。该桨叶与不同桨距角的桨毂组合装配,可实现人工变桨距,在地面试验中达到高空转速。该螺旋桨采用组合分体式桨毂布局、桨叶内部填充泡沫和碳纤维混合结构,基于NSGA⁃Ⅱ(non⁃dominated sorting genetic algorithm),完成了支座固支的桨叶铺层参数优化,得到桨叶质量和频率的Pareto解集,在±10%频率安全裕度外选取最优铺层方案,并与实物测试值对比,结果表明:桨叶质量相对误差2.09%;支座固支的单桨叶频率相对误差9.30%;桨毂固支的组合体频率相对误差2.76%,避开了工作转速共振区间,证明该结构优化方法是合理有效的。

     

  • 图 1  对插一体式和组合分体式螺旋桨结构布局

    Figure 1.  Plug⁃in integrated and combined split propeller structure layout

    图 2  桨叶圆柱形根部结构布局

    Figure 2.  Blade cylindrical root structure layout

    图 3  内部空心式和内部填充式螺旋桨结构形式

    Figure 3.  Internal hollow type and internal filled type propeller structural style

    图 4  桨叶剖面C形梁内部填充结构形式

    Figure 4.  Blade profile C⁃shaped beam internal filling structural style

    图 5  桨叶有限元模型及分区

    Figure 5.  Blade finite element model and partition

    图 6  弹性支座固支桨叶有限元模型

    Figure 6.  Finite element model of fixed⁃supported blade on elastic support

    图 7  CFD计算与有限元模型加载的桨叶气动压力云图对比

    Figure 7.  Blade aerodynamic pressure contour comparison between CFD calculation and finite element model loading

    图 8  对称削层铺层结构示意图

    Figure 8.  Symmetrical cutting layer layup structure diagram

    图 9  桨叶铺层参数优化模型

    Figure 9.  Blade layup parameter optimization model

    图 10  桨叶质量和频率的Pareto解集

    Figure 10.  Pareto solution set of blade mass and frequency

    图 12  设计方案1阶挥舞振型

    Figure 12.  Design scheme first order flap⁃round mode shape

    图 13  镂空桨毂设计方案

    Figure 13.  Hollow out propeller hub design scheme

    图 16  弹性支座固支桨叶频率试验

    Figure 16.  Frequency test of fixed blade of elastic support

    图 17  法兰固支桨毂组合分体式三叶桨频率试验

    Figure 17.  Frequency test of split three⁃blade propeller with flange⁃fixed hub

    表  2  典型工况气动计算结果与实物测试结果对比

    Table  2.   Comparison of aerodynamic calculation results with physical test results in typical working conditions

    参数气动计算实物测试相对误差/%
    沿x轴的拉力/N128.32123.483.77
    x轴的力矩/(Nm)24.0223.203.41
    下载: 导出CSV

    表  3  初始铺层参数

    Table  3.   Initial layup parameters

    铺层区域材料及厚度/mm角度/(°)层数
    12zw 0.2901
    1dxd 0.12502
    1zw 0.2452
    1dxd 0.12502
    12zw 0.2901
    下载: 导出CSV

    表  4  高空最大载荷工况与地面超转工况对比

    Table  4.   Comparison of the maximum load condition at high altitude and the overturn condition on the ground

    参数高空最大载荷工况地面超转工况
    沿x轴的拉力/N-60.36-307.30
    x轴的力矩/(Nm)12.6253.61
    复合材料最大应变/10-61 3071 559
    泡沫最大应变/10-62 7322 954
    下载: 导出CSV

    表  5  CFD气动载荷与有限元模型加载的气动载荷对比

    Table  5.   Comparison of aerodynamic loads between CFD and finite element models

    参数气动载荷绝对误差
    CFD有限元模型
    Fx/N-314.09-307.306.79
    Fy/N-81.73-75.795.94
    Fz/N6.218.21-2.00
    Mx/(Nm)58.3653.614.75
    My/(Nm)-244.40-239.205.20
    Mz/(Nm)-0.71-0.580.13
    下载: 导出CSV

    表  6  最优铺层设计方案

    Table  6.   Optimal layer design scheme

    铺层区域材料及厚度/mm角度/(°)
    12zw 0.290
    1zw 0.290
    1zw 0.245
    6dxd 0.1250
    下载: 导出CSV

    表  7  桨叶测试数据与计算数据对比

    Table  7.   Comparison of blade test data and calculated data

    参数测试值分析值相对误差/%
    质量/kg0.9570.9372.09
    支座固支单叶频率/Hz47.4752.349.30
    法兰固支组合频率/Hz22.5823.222.76
    下载: 导出CSV
  • [1] 李帅,陈永霖,肖畅,等.平流层飞艇蒙皮复合织物材料撕裂性能研究[J].合肥工业大学学报(自然科学版),2020,43(11):1456⁃1462.

    LI Shuai,CHEN Yonglin,XIAO Chang,et al.Study on tear properties of composite fabric materials for stratosphere airship envelope[J].Journal of Hefei University of Technology (Natural Science),2020,43(11):1456⁃1462.(in Chinese)
    [2] 龙飞.平流层飞艇发展现状研究[J].决策探索(中),2019,35(5):96.

    LONG Fei.Research on the development status of stratospheric airship[J].Policy Research and Exploration (midmonth),2019,35(5):96.(in Chinese)
    [3] 彭桂林,万志强.中国浮空器遥感遥测应用现状与展望[J].地球信息科学学报,2019,21(4):504⁃511.

    PENG Guilin,WAN Zhiqiang.The present situation and prospect of aerostat applied to remote sensing and remote survey in China[J].Journal of Geo‑Information Science,2019,21(4):504⁃511.(in Chinese)
    [4] 牛宏伟,郭海东,张永峰.基于振动应力飞行实测的螺旋桨旋转共振特性研究[J].现代机械,2017,44(3):77⁃80.

    NIU Hongwei,GUO Haidong,ZHANG Yongfeng.Research on the rotation resonace characteristics of propeller based on inflight vibration stress test[J].Modern Machinery,2017,44(3):77⁃80.(in Chinese)
    [5] AN Weigang,CHEN Dianyu,JIN Peng.A single⁃level composite structure optimization method based on a blending tapered model[J].Chinese Journal of Aeronautics,2013,26(4):943⁃947.
    [6] WANG Lin,KOLIOS A,NISHINO T,et al.Structural optimization of vertical⁃axis wind turbine composite blades based on finite element analysis and genetic algorithm[J].Composite Structures,2016,153:123⁃138.
    [7] MENG Junhui,HU Jie,XIAO Houdi,et al.Hierarchical optimization of the composite blade of a stratospheric airship propeller based on genetic algorithm[J].Structural and Multidisciplinary Optimization,2017,56(6):1341⁃1352.
    [8] 程俊杰,王海峰,尚玲玲,等.一种高空飞艇螺旋桨结构多目标优化设计方法[J].航空动力学报,2021,36(3):584⁃591.

    CHENG Junjie,WANG Haifeng,SHANG Lingling,et al.Multi‑objective optimization design method for propeller structure of high‑altitude airship[J].Journal of Aerospace Power,2021,36(3):584⁃591.(in Chinese)
    [9] 贾小平,邢旺,于魁龙.某陆空汽车变桨距式镂空桨毂设计[J].湖北理工学院学报,2013,29(4):1⁃3.

    JIA Xiaoping,XING Wang,YU Kuilong.Design of controllable pitch propeller used in air⁃ground vehicle[J].Journal of Hubei Polytechnic University,2013,29(4):1⁃3.(in Chinese)
    [10] 胡举喜,田靖军,丁晨,等.基于有限元方法的调距桨镂空桨毂机构强度分析[J].船舶工程,2018,40(1):65⁃70.

    HU Juxi,TIAN Jingjun,DING Chen,et al.Strength analysis of hub mechanism of CPP based on finite element method[J].Ship Engineering,2018,40(1):65⁃70.(in Chinese)
    [11] 王海峰,杨旭东,罗玲,等.平流层飞艇推进系统设计与测试技术[M].北京:国防工业出版社,2021.
    [12] 张碧辉,李喜乐,周波.复合材料螺旋桨结构多目标优化设计[J].航空工程进展,2018,9(1):77⁃83,98.

    ZHANG Bihui,LI Xile,ZHOU Bo.Multi⁃objective optimization of a composite material propeller structure[J].Advances in Aeronautical Science and Engineering,2018,9(1):77⁃83,98.(in Chinese)
    [13] 胡培.飞机夹层结构的设计和泡沫芯材的选择[J].航空制造技术,2010,53(17):94⁃96.

    HU Pei.Design of sandwich structure and selection of foam core material for aircraft[J].Aeronautical Manufacturing Technology,2010,53(17):94⁃96.(in Chinese)
    [14] 胡殿印,彭苗娇,王荣桥.树脂基复合材料风扇叶片的优化设计[J].航空动力学报,2012,27(7):1630⁃1637.

    HU Dianyin,PENG Miaojiao,WANG Rongqiao.Optimization design of resin⁃based composite fan blade[J].Journal of Aerospace Power,2012,27(7):1630⁃1637.(in Chinese)
    [15] 韩庆,王广博,钟小平,等.基于遗传算法的复合材料泡沫夹层板铺层优化设计[J].航空工程进展,2013,4(2):182‑185.

    HAN Qing,WANG Guangbo,ZHONG Xiaoping,et al.Ply optimization design of foam sandwich composite panel based on genetic algorithm[J].Advances in Aeronautical Science and Engineering,2013,4(2):182⁃185.(in Chinese)
    [16] 安伟刚,梁生云,陈殿宇.一种局部动态数据交换方法在流固耦合分析中的应用[J].航空学报,2013,34(3):541⁃546.

    AN Weigang,LIANG Shengyun,CHEN Dianyu.Local dynamic data exchange in fluid structure interaction anslysis[J].Acta Aeronautica et Astronautica Sinica,2013,34(3):541⁃546.(in Chinese)
    [17] IRISARRI F X,LASSEIGNE A,LEROY F H,et al.Optimal design of laminated composite structures with ply drops using stacking sequence tables[J].Composite Structures,2014,107:559⁃569.
    [18] 朱启晨,陈勇,肖贾光毅.复合材料风扇叶片铺层设计方法研究[J].航空发动机,2018,44(3):49⁃54.

    ZHU Qichen,CHEN Yong,XIAO Jiaguangyi.Study on laminate design method of composite fan blade[J].Aeroengine,2018,44(3):49⁃54.(in Chinese)
    [19] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA⁃Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182⁃197.
    [20] VERITAS D N.Guidelines for design of wind turbines[M].2nd.ed.Copenhagen:DNV/Risø,2002:169⁃173.
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  105
  • HTML浏览量:  24
  • PDF量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30

目录

    /

    返回文章
    返回