Structure optimization method of three⁃blade propeller for stratospheric airship
-
摘要:
为实现螺旋桨轻质量和高固有频率之间的权衡设计,发展了1种桨叶对称削层结构的分区优化方法。为拓宽其高效率的速度和高度范围,应采用变桨距技术,需要设计圆柱形桨叶根部。该桨叶与不同桨距角的桨毂组合装配,可实现人工变桨距,在地面试验中达到高空转速。该螺旋桨采用组合分体式桨毂布局、桨叶内部填充泡沫和碳纤维混合结构,基于NSGA⁃Ⅱ(non⁃dominated sorting genetic algorithm),完成了支座固支的桨叶铺层参数优化,得到桨叶质量和频率的Pareto解集,在±10%频率安全裕度外选取最优铺层方案,并与实物测试值对比,结果表明:桨叶质量相对误差2.09%;支座固支的单桨叶频率相对误差9.30%;桨毂固支的组合体频率相对误差2.76%,避开了工作转速共振区间,证明该结构优化方法是合理有效的。
Abstract:In order to achieve propeller's trade⁃off design between light mass and high natural frequency,a partition optimization method of symmetrical cutting layer structure for its blade was developed.For broadening its speed and height range of high efficiency,variable pitch technology should be adopted,and cylindrical blade root should be designed.The blades were assembled with the hub of different pitch angles,which can realize manual variable pitch and reach the high altitude rotate speed in ground test.A combined split hub layout,foam⁃filled form inside the blades,and carbon fiber hybrid structure in the propeller were adopted,the laying parameters optimization of fixed⁃supported propeller blades was finished based on the NSGA⁃Ⅱ (non⁃dominated sorting algorithm),and Pareto solution set of blade mass and frequency was obtained.The optimal laying scheme was selected outside the ±10% of frequency safety margin,and compared with test values of the actual prototype.The results showed that the relative error of blade mass was 2.09%,the relative error of single blade frequency on fixed support was 9.30%,and the relative error of the combined frequency of three blades and the hub on fixed support was 2.76%.This avoided resonance region of the working rotate speed,proving that the structure optimization method is reasonable and effective.
-
Key words:
- stratospheric airship /
- propeller /
- structure optimization /
- Pareto solution set /
- natural frequency /
- variable pitch
-
表 2 典型工况气动计算结果与实物测试结果对比
Table 2. Comparison of aerodynamic calculation results with physical test results in typical working conditions
参数 气动计算 实物测试 相对误差/% 沿x轴的拉力/N 128.32 123.48 3.77 绕x轴的力矩/ 24.02 23.20 3.41 表 3 初始铺层参数
Table 3. Initial layup parameters
铺层区域 材料及厚度/mm 角度/(°) 层数 12 zw 0.2 90 1 1 dxd 0.125 0 2 1 zw 0.2 45 2 1 dxd 0.125 0 2 12 zw 0.2 90 1 表 4 高空最大载荷工况与地面超转工况对比
Table 4. Comparison of the maximum load condition at high altitude and the overturn condition on the ground
参数 高空最大载荷工况 地面超转工况 沿x轴的拉力/N -60.36 -307.30 绕x轴的力矩/ 12.62 53.61 复合材料最大应变/10-6 1 307 1 559 泡沫最大应变/10-6 2 732 2 954 表 5 CFD气动载荷与有限元模型加载的气动载荷对比
Table 5. Comparison of aerodynamic loads between CFD and finite element models
参数 气动载荷 绝对误差 CFD 有限元模型 Fx/N -314.09 -307.30 6.79 Fy/N -81.73 -75.79 5.94 Fz/N 6.21 8.21 -2.00 Mx/ 58.36 53.61 4.75 My/ -244.40 -239.20 5.20 Mz/ -0.71 -0.58 0.13 表 6 最优铺层设计方案
Table 6. Optimal layer design scheme
铺层区域 材料及厚度/mm 角度/(°) 12 zw 0.2 90 1 zw 0.2 90 1 zw 0.2 45 6 dxd 0.125 0 表 7 桨叶测试数据与计算数据对比
Table 7. Comparison of blade test data and calculated data
参数 测试值 分析值 相对误差/% 质量/kg 0.957 0.937 2.09 支座固支单叶频率/Hz 47.47 52.34 9.30 法兰固支组合频率/Hz 22.58 23.22 2.76 -
[1] 李帅,陈永霖,肖畅,等.平流层飞艇蒙皮复合织物材料撕裂性能研究[J].合肥工业大学学报(自然科学版),2020,43(11):1456⁃1462.LI Shuai,CHEN Yonglin,XIAO Chang,et al.Study on tear properties of composite fabric materials for stratosphere airship envelope[J].Journal of Hefei University of Technology (Natural Science),2020,43(11):1456⁃1462.(in Chinese) [2] 龙飞.平流层飞艇发展现状研究[J].决策探索(中),2019,35(5):96.LONG Fei.Research on the development status of stratospheric airship[J].Policy Research and Exploration (midmonth),2019,35(5):96.(in Chinese) [3] 彭桂林,万志强.中国浮空器遥感遥测应用现状与展望[J].地球信息科学学报,2019,21(4):504⁃511.PENG Guilin,WAN Zhiqiang.The present situation and prospect of aerostat applied to remote sensing and remote survey in China[J].Journal of Geo‑Information Science,2019,21(4):504⁃511.(in Chinese) [4] 牛宏伟,郭海东,张永峰.基于振动应力飞行实测的螺旋桨旋转共振特性研究[J].现代机械,2017,44(3):77⁃80.NIU Hongwei,GUO Haidong,ZHANG Yongfeng.Research on the rotation resonace characteristics of propeller based on inflight vibration stress test[J].Modern Machinery,2017,44(3):77⁃80.(in Chinese) [5] AN Weigang,CHEN Dianyu,JIN Peng.A single⁃level composite structure optimization method based on a blending tapered model[J].Chinese Journal of Aeronautics,2013,26(4):943⁃947. [6] WANG Lin,KOLIOS A,NISHINO T,et al.Structural optimization of vertical⁃axis wind turbine composite blades based on finite element analysis and genetic algorithm[J].Composite Structures,2016,153:123⁃138. [7] MENG Junhui,HU Jie,XIAO Houdi,et al.Hierarchical optimization of the composite blade of a stratospheric airship propeller based on genetic algorithm[J].Structural and Multidisciplinary Optimization,2017,56(6):1341⁃1352. [8] 程俊杰,王海峰,尚玲玲,等.一种高空飞艇螺旋桨结构多目标优化设计方法[J].航空动力学报,2021,36(3):584⁃591.CHENG Junjie,WANG Haifeng,SHANG Lingling,et al.Multi‑objective optimization design method for propeller structure of high‑altitude airship[J].Journal of Aerospace Power,2021,36(3):584⁃591.(in Chinese) [9] 贾小平,邢旺,于魁龙.某陆空汽车变桨距式镂空桨毂设计[J].湖北理工学院学报,2013,29(4):1⁃3.JIA Xiaoping,XING Wang,YU Kuilong.Design of controllable pitch propeller used in air⁃ground vehicle[J].Journal of Hubei Polytechnic University,2013,29(4):1⁃3.(in Chinese) [10] 胡举喜,田靖军,丁晨,等.基于有限元方法的调距桨镂空桨毂机构强度分析[J].船舶工程,2018,40(1):65⁃70.HU Juxi,TIAN Jingjun,DING Chen,et al.Strength analysis of hub mechanism of CPP based on finite element method[J].Ship Engineering,2018,40(1):65⁃70.(in Chinese) [11] 王海峰,杨旭东,罗玲,等.平流层飞艇推进系统设计与测试技术[M].北京:国防工业出版社,2021. [12] 张碧辉,李喜乐,周波.复合材料螺旋桨结构多目标优化设计[J].航空工程进展,2018,9(1):77⁃83,98.ZHANG Bihui,LI Xile,ZHOU Bo.Multi⁃objective optimization of a composite material propeller structure[J].Advances in Aeronautical Science and Engineering,2018,9(1):77⁃83,98.(in Chinese) [13] 胡培.飞机夹层结构的设计和泡沫芯材的选择[J].航空制造技术,2010,53(17):94⁃96.HU Pei.Design of sandwich structure and selection of foam core material for aircraft[J].Aeronautical Manufacturing Technology,2010,53(17):94⁃96.(in Chinese) [14] 胡殿印,彭苗娇,王荣桥.树脂基复合材料风扇叶片的优化设计[J].航空动力学报,2012,27(7):1630⁃1637.HU Dianyin,PENG Miaojiao,WANG Rongqiao.Optimization design of resin⁃based composite fan blade[J].Journal of Aerospace Power,2012,27(7):1630⁃1637.(in Chinese) [15] 韩庆,王广博,钟小平,等.基于遗传算法的复合材料泡沫夹层板铺层优化设计[J].航空工程进展,2013,4(2):182‑185.HAN Qing,WANG Guangbo,ZHONG Xiaoping,et al.Ply optimization design of foam sandwich composite panel based on genetic algorithm[J].Advances in Aeronautical Science and Engineering,2013,4(2):182⁃185.(in Chinese) [16] 安伟刚,梁生云,陈殿宇.一种局部动态数据交换方法在流固耦合分析中的应用[J].航空学报,2013,34(3):541⁃546.AN Weigang,LIANG Shengyun,CHEN Dianyu.Local dynamic data exchange in fluid structure interaction anslysis[J].Acta Aeronautica et Astronautica Sinica,2013,34(3):541⁃546.(in Chinese) [17] IRISARRI F X,LASSEIGNE A,LEROY F H,et al.Optimal design of laminated composite structures with ply drops using stacking sequence tables[J].Composite Structures,2014,107:559⁃569. [18] 朱启晨,陈勇,肖贾光毅.复合材料风扇叶片铺层设计方法研究[J].航空发动机,2018,44(3):49⁃54.ZHU Qichen,CHEN Yong,XIAO Jiaguangyi.Study on laminate design method of composite fan blade[J].Aeroengine,2018,44(3):49⁃54.(in Chinese) [19] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA⁃Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182⁃197. [20] VERITAS D N.Guidelines for design of wind turbines[M].2nd.ed.Copenhagen:DNV/Risø,2002:169⁃173. -