Calculation and analysis of temperature distribution of single expansion after⁃body based on conjugate heat transfer
-
摘要:
基于共轭传热数值计算方法,对某高隐身无人机(UAV)单边膨胀后体喷流作用下的壁面温度分布进行研究,利用薄壁型网格解决了面积大且厚度薄的蒙皮、侧板结构导致的网格量过大的问题,构建精度较高的计算模型,并完成相关计算分析,主要结论如下:传统的单一流体计算虽然可以得到相似的温度分布,但得到的温度值偏高,最大可相差50 K以上;共轭传热计算可以得到更为符合实际的结果,并且可以得到结构内部温度梯度的分布,为热应力分析及结构设计提供指导;对比相同流动条件下不同金属材料的影响,某耐高温合金的壁面温度极值比金属钢高约30 K,且其上、下壁面的温差更大,梯度更高,两材料纵向肋板位置温度梯度极值分别为120 K/cm和65 K/cm。
Abstract:Based on the conjugate heat transfer numerical simulation method,the wall temperature distribution of single expansion after⁃body of a high stealth unmanned aerial vehicle (UAV) was studied.The problem of excessive mesh caused by large area and thin thickness of skin and side plate structure was solved by using thin⁃walled layer mesh.A high⁃precision calculation model was constructed,and the relevant calculation and analysis was completed.The main conclusions were made as follows:although the traditional single fluid calculation can obtain similar temperature distribution,the temperature value was much higher,and the maximum difference can be more than 50 K;the results of conjugate heat transfer calculation were more practical,and could furthermore obtain the temperature gradient distribution in the structure,providing a guidance for thermal stress analysis and structural design;comparing the effects of different metal materials under the same flow conditions,the wall temperature extreme value of a high temperature resistant alloy was about 30 K higher than that of metal steel,and the temperature difference between the upper and lower walls was larger and the gradient was higher.The temperature gradient extreme values of longitudinal ribs of the two materials were 120 K/cm and 65 K/cm,respectively.
-
Key words:
- conjugate heat transfer /
- jet flow /
- single expansion /
- nozzle duct /
- after⁃body /
- unmanned aerial vehicle (UAV)
-
表 1 网格参数及说明
Table 1. Mesh parameters and description
参数 数值及说明 网格1 网格2 网格3 网格4 流体网格数/万 455 666 672 912 固体网格数/万 79 115 189 360 网格总数/万 534 781 861 1 272 流体网格粗细 较粗 中间 中间 较细 薄壁网格层数 3 3 5 7 -
[1] NANGIA R K,PALMER M E.A comparative study of UCAV type wing platforms‑aero performance and stability considerations [R].AIAA 2005⁃5078,2005. [2] 徐啟云,王洁,郝文渊,等.国外无人战斗机发展历程和趋势[J].飞航导弹,2016(3):28⁃32.XU Qiyun,WANG Jie,HAO Wenyuan,et al.Development history and trend of foreign UCAVs[J].Aerodynamic Missile Journal,2016(3):28⁃32.(in Chinese) [3] 马怡,潘志雄,罗烈.X⁃47B飞翼气动布局设计分析[J].航空科学技术,2014,25(12):1⁃4.MA Yi,PAN Zhixiong,LUO Lie.X⁃47B flying wing aerodynamic configuration analysis[J].Aeronautical Science and Technology,2014,25(12):1⁃4.(in Chinese) [4] 魏国福,周军,邢娅.欧洲神经元无人攻击机发展历程[J].飞航导弹,2013(8):23⁃26.WEI Guofu,ZHOU Jun,XING Ya.The development of European neuron unmanned attack aircraft[J].Aerodynamic Missile Journal,2013(8):23⁃26.(in Chinese) [5] 潘金宽.俄军重型无人机发展现状[J].军事文摘,2019(9):24⁃27.PAN Jinkuan.Development status of Russian heavy UAV [J].Military Digest,2019(9):24⁃27.(in Chinese) [6] 金捷,廖华琳,朱谷君,等.轴对称矢量喷管三维传热计算研究[J].燃气涡轮试验与研究,2002,15(2):4⁃7.JIN Jie,LIAO Hualin,ZHU Gujun,et al.A numerical investigation of 3D heat transfer for axisymmetric vectoring exhaust nozzle[J].Gas Turbine Experiment and Research,2002,15(2):4⁃7.(in Chinese) [7] 廖华琳,陈徐屹,张小英.矢量喷管内燃气辐射与壁面温度的耦合计算[J].航空动力学报,2016,31(3):581⁃587.LIAO Hualin,CHEN Xuqi,ZHANG Xiaoying.Coupled simulation of gas radiation and wall temperature in vectored nozzle[J].Journal of Aerospace Power,2016,31(3):581‑587.(in Chinese) [8] 刘友宏,李江宁,才娟.考虑导热对流和辐射作用的轴对称收扩喷管壁温计算[J].航空动力学报,2008,23(4):635⁃635.LIU Youhong,LI Jiangning,CAI Juan.Wall temperature calculation on an axi‑symmetrical converging⁃diverging nozzle considering heat conduction convection and radiation[J].Journal of Aerospace Power,2008,23(4):635⁃635.(in Chinese) [9] 单勇,陈著,尚守堂,等.与飞机融合的单边膨胀喷管排气系统气动和红外辐射特征数值计算[J].航空发动机,2014,40(2):1⁃5.SHAN Yong,CHEN Zhu,SHANG Shoutang,et al.Aerodynamic and infrared radiation characteristics numerical simulation on single expansion ramp nozzle within aircraft[J].Aeroengine,2014,40(2):1⁃5.(in Chinese) [10] 张晓罗.二次流引入单边膨胀喷管气动性能及红外辐射特性研究[D].哈尔滨:哈尔滨工业大学,2019.ZHANG Xiaoluo.Study on aerodynamic performance and infrared radiation characteristics of single expansion ramp nozzle with secondary flow[D].Harbin:Harbin Institute of Technology,2019.(in Chinese) [11] 韩非,刘宇.轴对称喷管与圆转方喷管冷却换热特性的比较 [J].航空动力学报,2007,22(11):1947⁃1953.HAN Fei,LIU Yu.Heat transfer characteristics of axis⁃symmetrical nozzle and RS nozzle[J].Journal of Aerospace Power,2007,22(11):1947⁃1953.(in Chinese) [12] MARINEAU E C,SCHETZ J A,NEEL R E.Turbulent Navier⁃Stokes simulations of heat transfer with complex wall temperature variations[R].AIAA⁃2006⁃3087,2006. [13] MAN Y H,MI J J.A numerical study on three⁃dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat⁃generating cubic conducting body[J].International Journal of Heat and Mass Transfer,2000,43(23):4229⁃4248. [14] LI W,CHI Z,KAN R,et al.Experimental investigation of heat transfer dependency on conjugate and convective thermal boundary conditions in pin fin channel[R].Montreal,Canada:ASME Turbo Expo:Turbine Technical Conference and Exposition,2015. [15] MAN Y H,MI J J.A numerical study on three⁃dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat⁃generating cubic conducting body[J].International Journal of Heat and Mass Transfer,2000,43(23):4229⁃4248. [16] MENSCH A,THOLE K A,CRAVEN B A.Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating[J].Journal of Turbomachinery,2014,136(12):121003.1⁃121003.11 [17] INSINNA M,GRIFFINI D,SALVADORI S,et al.Conjugate heat transfer analysis of a film cooled high⁃pressure turbine vane under realistic combustor exit flow conditions[R].Düsseldorf,German:ASME Turbo Expo,2014. [18] 李虹杨,王霄,孙超,等.喷流作用下的单边膨胀后体气动载荷研究[J].航空学报,2021,42(8):525797.1⁃525797.11.LI Hongyang,WANG Xiao,SUN Chao,et al.Aerodynamic load of unilateral expanded after⁃body under jet effect[J].Acta Aeronautica et Astronautica Sinica,2021,42(8):525797.1⁃525797.11.(in Chinese) -