留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共轭传热的单边膨胀后体温度场计算分析

李虹杨 王霄 孙超

李虹杨,王霄,孙超.基于共轭传热的单边膨胀后体温度场计算分析[J].航空动力学报,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346
引用本文: 李虹杨,王霄,孙超.基于共轭传热的单边膨胀后体温度场计算分析[J].航空动力学报,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346
LI Hongyang,WANG Xiao,SUN Chao.Calculation and analysis of temperature distribution of single expansion after⁃body based on conjugate heat transfer[J].Journal of Aerospace Power,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346
Citation: LI Hongyang,WANG Xiao,SUN Chao.Calculation and analysis of temperature distribution of single expansion after⁃body based on conjugate heat transfer[J].Journal of Aerospace Power,2022,37(8):1569‑1578. doi: 10.13224/j.cnki.jasp.20210346

基于共轭传热的单边膨胀后体温度场计算分析

doi: 10.13224/j.cnki.jasp.20210346
详细信息
    作者简介:

    李虹杨(1989-),男,高级工程师,博士,主要从事飞行器气动布局设计,进排气系统设计等方面的研究。

  • 中图分类号: V211.3

Calculation and analysis of temperature distribution of single expansion after⁃body based on conjugate heat transfer

  • 摘要:

    基于共轭传热数值计算方法,对某高隐身无人机(UAV)单边膨胀后体喷流作用下的壁面温度分布进行研究,利用薄壁型网格解决了面积大且厚度薄的蒙皮、侧板结构导致的网格量过大的问题,构建精度较高的计算模型,并完成相关计算分析,主要结论如下:传统的单一流体计算虽然可以得到相似的温度分布,但得到的温度值偏高,最大可相差50 K以上;共轭传热计算可以得到更为符合实际的结果,并且可以得到结构内部温度梯度的分布,为热应力分析及结构设计提供指导;对比相同流动条件下不同金属材料的影响,某耐高温合金的壁面温度极值比金属钢高约30 K,且其上、下壁面的温差更大,梯度更高,两材料纵向肋板位置温度梯度极值分别为120 K/cm和65 K/cm。

     

  • 图 1  流/固交界面耦合策略示意图

    Figure 1.  Schematic diagram of fluid/solid interface coupling strategy

    图 2  平板对流换热的计算网格(前缘局部)

    Figure 2.  Computational mesh of the plate convection heat transfer (local part of leading edge)

    图 3  计算结果与理论解的对比

    Figure 3.  Comparison between the calculated result and the theoretical solution

    图 4  单边膨胀喷管⁃后体型面示意图

    Figure 4.  Schematic diagram of single expansion nozzle after⁃body surface

    图 5  单边膨胀喷管⁃后体结构设计示意图

    Figure 5.  Schematic diagram of single expansion nozzle after⁃body structure design

    图 6  网格示意图(下膨胀边)

    Figure 6.  Mesh schematic diagram (the lower expansion edge)

    图 7  网格示意图(局部放大)

    Figure 7.  Mesh schematic diagram (local enlarged)

    图 8  网格示意图(对称面)

    Figure 8.  Mesh schematic diagram (symmetry surface)

    图 11  计算结果与某试验测试数据对比

    Figure 11.  Comparison of the calculated results with an experiment test data

    图 13  温度分布的对比(z/D=0截线)

    Figure 13.  Comparison of the temperature distribution (z/D=0 cutline)

    图 14  温度分布的对比(z/D=0.35截线)

    Figure 14.  Comparison of the temperature distribution (z/D=0.35 cutline)

    图 15  温度分布的对比(x/L=0.35截线)

    Figure 15.  Comparison of the temperature distribution (x/L =0.35 cutline)

    图 16  温度分布的对比(x/L=0.52截线)

    Figure 16.  Comparison of the temperature distribution (x/L =0.52 cutline)

    图 18  金属材料对温度分布的影响(z/D=0截线)

    Figure 18.  Effect of metal material on temperature distribution (z/D=0 cutline)

    图 19  金属材料对温度分布的影响(x/L=0.52截线)

    Figure 19.  Effect of metal material on temperature distribution (x/L =0.52 cutline)

    表  1  网格参数及说明

    Table  1.   Mesh parameters and description

    参数数值及说明
    网格1网格2网格3网格4
    流体网格数/万455666672912
    固体网格数/万79115189360
    网格总数/万5347818611 272
    流体网格粗细较粗中间中间较细
    薄壁网格层数3357
    下载: 导出CSV
  • [1] NANGIA R K,PALMER M E.A comparative study of UCAV type wing platforms‑aero performance and stability considerations [R].AIAA 2005⁃5078,2005.
    [2] 徐啟云,王洁,郝文渊,等.国外无人战斗机发展历程和趋势[J].飞航导弹,2016(3):28⁃32.

    XU Qiyun,WANG Jie,HAO Wenyuan,et al.Development history and trend of foreign UCAVs[J].Aerodynamic Missile Journal,2016(3):28⁃32.(in Chinese)
    [3] 马怡,潘志雄,罗烈.X⁃47B飞翼气动布局设计分析[J].航空科学技术,2014,25(12):1⁃4.

    MA Yi,PAN Zhixiong,LUO Lie.X⁃47B flying wing aerodynamic configuration analysis[J].Aeronautical Science and Technology,2014,25(12):1⁃4.(in Chinese)
    [4] 魏国福,周军,邢娅.欧洲神经元无人攻击机发展历程[J].飞航导弹,2013(8):23⁃26.

    WEI Guofu,ZHOU Jun,XING Ya.The development of European neuron unmanned attack aircraft[J].Aerodynamic Missile Journal,2013(8):23⁃26.(in Chinese)
    [5] 潘金宽.俄军重型无人机发展现状[J].军事文摘,2019(9):24⁃27.

    PAN Jinkuan.Development status of Russian heavy UAV [J].Military Digest,2019(9):24⁃27.(in Chinese)
    [6] 金捷,廖华琳,朱谷君,等.轴对称矢量喷管三维传热计算研究[J].燃气涡轮试验与研究,2002,15(2):4⁃7.

    JIN Jie,LIAO Hualin,ZHU Gujun,et al.A numerical investigation of 3D heat transfer for axisymmetric vectoring exhaust nozzle[J].Gas Turbine Experiment and Research,2002,15(2):4⁃7.(in Chinese)
    [7] 廖华琳,陈徐屹,张小英.矢量喷管内燃气辐射与壁面温度的耦合计算[J].航空动力学报,2016,31(3):581⁃587.

    LIAO Hualin,CHEN Xuqi,ZHANG Xiaoying.Coupled simulation of gas radiation and wall temperature in vectored nozzle[J].Journal of Aerospace Power,2016,31(3):581‑587.(in Chinese)
    [8] 刘友宏,李江宁,才娟.考虑导热对流和辐射作用的轴对称收扩喷管壁温计算[J].航空动力学报,2008,23(4):635⁃635.

    LIU Youhong,LI Jiangning,CAI Juan.Wall temperature calculation on an axi‑symmetrical converging⁃diverging nozzle considering heat conduction convection and radiation[J].Journal of Aerospace Power,2008,23(4):635⁃635.(in Chinese)
    [9] 单勇,陈著,尚守堂,等.与飞机融合的单边膨胀喷管排气系统气动和红外辐射特征数值计算[J].航空发动机,2014,40(2):1⁃5.

    SHAN Yong,CHEN Zhu,SHANG Shoutang,et al.Aerodynamic and infrared radiation characteristics numerical simulation on single expansion ramp nozzle within aircraft[J].Aeroengine,2014,40(2):1⁃5.(in Chinese)
    [10] 张晓罗.二次流引入单边膨胀喷管气动性能及红外辐射特性研究[D].哈尔滨:哈尔滨工业大学,2019.

    ZHANG Xiaoluo.Study on aerodynamic performance and infrared radiation characteristics of single expansion ramp nozzle with secondary flow[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)
    [11] 韩非,刘宇.轴对称喷管与圆转方喷管冷却换热特性的比较 [J].航空动力学报,2007,22(11):1947⁃1953.

    HAN Fei,LIU Yu.Heat transfer characteristics of axis⁃symmetrical nozzle and RS nozzle[J].Journal of Aerospace Power,2007,22(11):1947⁃1953.(in Chinese)
    [12] MARINEAU E C,SCHETZ J A,NEEL R E.Turbulent Navier⁃Stokes simulations of heat transfer with complex wall temperature variations[R].AIAA⁃2006⁃3087,2006.
    [13] MAN Y H,MI J J.A numerical study on three⁃dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat⁃generating cubic conducting body[J].International Journal of Heat and Mass Transfer,2000,43(23):4229⁃4248.
    [14] LI W,CHI Z,KAN R,et al.Experimental investigation of heat transfer dependency on conjugate and convective thermal boundary conditions in pin fin channel[R].Montreal,Canada:ASME Turbo Expo:Turbine Technical Conference and Exposition,2015.
    [15] MAN Y H,MI J J.A numerical study on three⁃dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat⁃generating cubic conducting body[J].International Journal of Heat and Mass Transfer,2000,43(23):4229⁃4248.
    [16] MENSCH A,THOLE K A,CRAVEN B A.Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating[J].Journal of Turbomachinery,2014,136(12):121003.1⁃121003.11
    [17] INSINNA M,GRIFFINI D,SALVADORI S,et al.Conjugate heat transfer analysis of a film cooled high⁃pressure turbine vane under realistic combustor exit flow conditions[R].Düsseldorf,German:ASME Turbo Expo,2014.
    [18] 李虹杨,王霄,孙超,等.喷流作用下的单边膨胀后体气动载荷研究[J].航空学报,2021,42(8):525797.1⁃525797.11.

    LI Hongyang,WANG Xiao,SUN Chao,et al.Aerodynamic load of unilateral expanded after⁃body under jet effect[J].Acta Aeronautica et Astronautica Sinica,2021,42(8):525797.1⁃525797.11.(in Chinese)
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  259
  • HTML浏览量:  38
  • PDF量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-04

目录

    /

    返回文章
    返回