留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Levenberg-Marquardt算法的航空发动机模型求解混合算法

唐洪威 谢文平 崔毅 邓康耀

唐洪威, 谢文平, 崔毅, 等. 基于Levenberg-Marquardt算法的航空发动机模型求解混合算法[J]. 航空动力学报, 2023, 38(2):371-381 doi: 10.13224/j.cnki.jasp.20210367
引用本文: 唐洪威, 谢文平, 崔毅, 等. 基于Levenberg-Marquardt算法的航空发动机模型求解混合算法[J]. 航空动力学报, 2023, 38(2):371-381 doi: 10.13224/j.cnki.jasp.20210367
TANG Hongwei, XIE Wenping, CUI Yi, et al. Hybrid algorithm for aero-engine model solving based on Levenberg-Marquardt algorithm[J]. Journal of Aerospace Power, 2023, 38(2):371-381 doi: 10.13224/j.cnki.jasp.20210367
Citation: TANG Hongwei, XIE Wenping, CUI Yi, et al. Hybrid algorithm for aero-engine model solving based on Levenberg-Marquardt algorithm[J]. Journal of Aerospace Power, 2023, 38(2):371-381 doi: 10.13224/j.cnki.jasp.20210367

基于Levenberg-Marquardt算法的航空发动机模型求解混合算法

doi: 10.13224/j.cnki.jasp.20210367
详细信息
    作者简介:

    唐洪威(1996-),男,硕士,主要从事发动机系统仿真研究。E-mail:thw0425@sjtu.edu.cn

    通讯作者:

    崔毅(1971-),男,研究员、博士生导师,博士,主要从事发动机仿真与CAE研究。E-mail:ycui@sjtu.edu.cn

  • 中图分类号: V231

Hybrid algorithm for aero-engine model solving based on Levenberg-Marquardt algorithm

  • 摘要:

    为了降低航空发动机非线性模型求解的收敛性要求,将模型非线性方程组的求解问题转化为最小二乘问题,提出了基于Levenberg-Marquardt(L-M)算法的混合算法。为了使L-M算法跳出局部解,混合算法使用动力学方法修正局部解;为了提高计算效率,利用Broyden拟牛顿法加速L-M算法。以涡扇发动机为研究对象,应用混合算法、L-M算法、牛顿法和Broyden拟牛顿法进行稳态和瞬态仿真。结果表明:在稳态工况下,L-M算法和混合算法收敛范围更大,在随机初值条件下能达到90%以上的收敛率,远高于牛顿法和Broyden拟牛顿法不到20%的收敛率,且混合算法计算速度与Broyden拟牛顿法相当。在瞬态工况下, L-M算法和混合算法能够在牛顿法和Broyden拟牛顿法都不收敛的强瞬变工况收敛,且混合算法瞬态计算时间仅为Broyden拟牛顿法的1.13倍。仿真结果表明该算法在航空发动机模型求解上具有良好的适用性。

     

  • 图 1  混合算法流程图

    Figure 1.  Flow chart of hybrid algorithm

    图 2  动力学修正流程图

    Figure 2.  Flow chart of dynamical modified

    图 3  分开排气涡扇发动机简图

    2 进口截面;3 高压压气机出口截面;6 内涵喷管进口截面;8 内涵喷管出口截面;16 外涵喷管进口截面;18 外涵喷管出口截面;25高压压气机进口截面;41 高压涡轮进口截面;43 高压涡轮出口截面;45 低压涡轮进口截面;49 低压涡轮出口截面。

    Figure 3.  Simplified diagram of a separate exhaust turbofan engine

    图 4  随机输入残差分布情况

    Figure 4.  Residual distribution of random input

    图 5  燃油阶跃输入信号

    Figure 5.  Fuel step input signal

    图 6  部件调动次数对比(工况 1)

    Figure 6.  Comparison of iterations number (case 1)

    图 7  部件调动次数对比(工况 2)

    Figure 7.  Comparison of iteration number (case 2)

    图 8  循环计算时间对比(工况 2)

    Figure 8.  Comparison of cycle computation time (case 2)

    表  1  迭代变量范围

    Table  1.   Range of iteration variables

    迭代变量最小值最大值
    ${\,\beta _{ {\text{fan} } } }$01
    ${\,\beta _{ {\text{lpc} } } }$01
    ${\,\beta _{ {\text{hpc} } } }$01
    ${\,\beta _{ {\text{hpt} } } }$01
    ${\,\beta _{ {\text{lpt} } } }$01
    ${n_1}$0.0011.2
    ${n_2}$0.0011.2
    下载: 导出CSV

    表  2  最大推力工况(H=0 m,Ma=0)

    Table  2.   Maximum thrust operation point (H=0 m,Ma=0)

    ${R_{{\text{el}}}}$值牛顿法Broyden拟牛顿法L-M算法混合算法
    是否收敛调动次数是否收敛调动次数是否收敛调动次数是否收敛调动次数
    −0.1(0.1)是(是)61(76)是(是)24(23)是(是)76(91)是(是)24(24)
    −0.2(0.2)是(是)91(91)是(是)31(24)是(是)91(106)是(是)43(37)
    −0.3(0.3)是(是)−(106)否(是)−(27)是(是)121(121)是(是)40(53)
    −0.4(0.4)否(否)否(是)−(32)是(是)121(136)是(是)45(68)
    −0.5(0.5)否(否)否(否)是(是)136(151)是(是)57(84)
    −0.6(0.6)否(否)否(否)是(是)196(151)是(是)86(85)
    −0.7(0.7)否(否)否(否)是(是)256(181)是(是)116(100)
    −0.8(0.8)否(否)否(否)是(是)256(181)是(是)148(116)
    下载: 导出CSV

    表  3  巡航工况(H=11000 m,Ma=0.8)

    Table  3.   Cruising operating point (H=11000 m,Ma=0.8)

    ${R_{{\text{el}}}}$值牛顿法Broyden拟牛顿法L-M算法混合算法
    是否收敛调动次数是否收敛调动次数是否收敛调动次数是否收敛调动次数
    −0.1(0.1)是(是)61(61)是(是)22(22)是(是)91(61)是(是)23(22)
    −0.2(0.2)是(是)61(61)是(是)27(23)是(是)106(91)是(是)27(23)
    −0.3(0.3)是(是)91(91)是(是)36(26)是(是)121(106)是(是)35(39)
    −0.4(0.4)是(是)91(121)是(是)56(34)是(是)136(121)是(是)46(54)
    −0.5(0.5)否(否)否(否)是(是)151(151)是(是)64(69)
    −0.6(0.6)否(否)否(否)是(是)151(166)是(是)74(85)
    −0.7(0.7)否(否)否(否)是(是)166(181)是(是)92(100)
    −0.8(0.8)否(否)否(否)是(是)151(196)是(是)117(116)
    下载: 导出CSV

    表  4  随机输入计算结果对比

    Table  4.   Comparison of random input calculation results

    样本数方法最大部件
    调动次数
    最小部件
    调动次数
    平均部件
    调动次数
    中断数不收敛解
    个数
    收敛解
    个数
    100牛顿法1367610081019
    Broyden拟牛顿法5027358677
    L-M算法3911062005491
    混合算法375381025095
    1000L-M算法496912135938903
    混合算法49923112604936
    下载: 导出CSV

    表  5  总计算时间和相对计算时间(工况 2)

    Table  5.   Total computation time and relative computation time (case 2)

    计算方法总时间/s相对计算时间
    牛顿法13.801.43
    Broyden拟牛顿法9.661
    L-M算法16.921.75
    混合算法10.921.13
    下载: 导出CSV
  • [1] 施洋,屠秋野,严红明,等. 一种航空发动机全状态性能模型[J]. 航空动力学报,2017,32(2): 373-381.

    SHI Yang,TU Qiuye,YAN Hongming,et al. A full states performance model for area engine[J]. Journal of Aerospace Power,2017,32(2): 373-381. (in Chinese)
    [2] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术,2018,39(5): 961-970.

    CAO Jianguo. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology,2018,39(5): 961-970. (in Chinese)
    [3] 周文祥,黄金泉,窦建平. 涡扇发动机部件级起动模型[J]. 航空动力学报,2006,21(2): 248-253. doi: 10.3969/j.issn.1000-8055.2006.02.004

    ZHOU Wenxiang,HUANG Jinquan,DOU Jianping. Development of component-level startup model for a turbofan engine[J]. Journal of Aerospace Power,2006,21(2): 248-253. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.02.004
    [4] 苟学中,周文祥,黄金泉. 变循环发动机部件级建模技术[J]. 航空动力学报,2013,28(1): 104-111.

    GOU Xuezhong,ZHOU Wenxiang,HUANG Jinquan. Compinent-level modeling technology for variable cycle engine[J]. Journal of Aerospace Power,2013,28(1): 104-111. (in Chinese)
    [5] 陈玉春,徐思远,杨云铠. 改善航空发动机特性计算收敛性的方法[J]. 航空动力学报,2008,23(12): 2242-2248. doi: 10.13224/j.cnki.jasp.2008.12.027

    CHEN Yuchun,XU Siyuan,YANG Yunkai. Research on the method to solve convergence problem in aero turbo engine performance computation[J]. Journal of Aerospace Power,2008,23(12): 2242-2248. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.12.027
    [6] 陈玉春,徐思远,屠秋野,等. 求解航空发动机非线性方程组的变步长牛顿法[J]. 航空计算技术,2009,39(1): 39-41. doi: 10.3969/j.issn.1671-654X.2009.01.010

    CHEN Yuchun,XU Siyuan,TU Qiuye,et al. Solving aeroengine nonlinear equations based on variable step size Newton method[J]. Aeronautical Computing Technique,2009,39(1): 39-41. (in Chinese) doi: 10.3969/j.issn.1671-654X.2009.01.010
    [7] 王元,李秋红,黄向华. 基于自校正Broyden拟牛顿法的航空发动机模型数值计算[J]. 航空动力学报,2016,31(1): 249-256.

    WANG Yuan,LI Qiuhong,HUANG Xianghua. Numerical calculation of area-engine model based on self-tuning Broyden quasi-Newton method[J]. Journal of Aerospace Power,2016,31(1): 249-256. (in Chinese)
    [8] 朱正琛,李秋红,王元,等. 基于微分进化算法的航空发动机模型修正[J]. 航空发动机,2016,42(1): 53-58.

    ZHU Zhengchen,LI Qiuhong,WANG Yuan,et al. Correction of aeroengine model based on differential evolution algorithm[J]. Aeroengine,2016,42(1): 53-58. (in Chinese)
    [9] 苏三买. 遗传算法及其在航空发动机非线性数学模型中的应用研究[D]. 西安: 西北工业大学, 2002.

    SU Sanmai. Research on genetic algorithm and its application in nonlinear mathematical model of aeroengine[D]. Xi’an: Northwestern Polytechnical University, 2002. (in Chinese)
    [10] 苏三买,廉小纯. 遗传算法在航空发动机非线性数学模型中的应用[J]. 推进技术,2004(3): 237-240. doi: 10.3321/j.issn:1001-4055.2004.03.012

    SU Sanmai,LIAN Xiaochun. Application of genetic algorithm in aeroengine nonlinear mathematical models[J]. Journal of Propulsion Technology,2004(3): 237-240. (in Chinese) doi: 10.3321/j.issn:1001-4055.2004.03.012
    [11] 钱海鹰,杨培源,徐松林. 基于粒子群算法的发动机部件模型求解[J]. 推进技术,2012,33(6): 974-980. doi: 10.13675/j.cnki.tjjs.2012.06.019

    QIAN Haiying,YANG Peiyuan,XU Songlin. Application of particle swarm optimization in obtaining solution of aeroengine component-level model[J]. Journal of Propulsion Technology,2012,33(6): 974-980. (in Chinese) doi: 10.13675/j.cnki.tjjs.2012.06.019
    [12] 黄飞燕, 黄洲荣, 陈洪骏. 基于粒子群算法的变循环发动机部件法建模及优化[J]. 数学的实践与认识, 2014, 44(14): 107-116.

    HUANG Feiyan, HUANG Zhourong, CHEN Hongjun. Application of particle swarm optimization on modeling and optimization of variable cycle engine component-level model[J]. Mathematical in Practice and Theory, 2014, 44(14): 107-116. (in Chinese)
    [13] 郝旺,王占学,张晓博,等. 基于自适应差分进化算法的变循环发动机模型求解方法研究[J]. 推进技术,2021,42(9): 1-11.

    HAO Wang,WANG Zhanxue,ZHANG Xiaobo,et al. Solving variable cycle engine model based on adaptive differential evolution algorithm[J]. Journal of Propulsion Technology,2021,42(9): 1-11. (in Chinese)
    [14] 苏三买,陈永琴. 基于混合遗传算法的航空发动机数学模型解法[J]. 推进技术,2007(6): 661-664. doi: 10.3321/j.issn:1001-4055.2007.06.015

    SU Sanmai,CHEN Yongqin. Hybrid genetic algorithm in solving aeroengine nonlinear mathematical model[J]. Journal of Propulsion Technology,2007(6): 661-664. (in Chinese) doi: 10.3321/j.issn:1001-4055.2007.06.015
    [15] 王军,隋岩峰. 求解航空发动机数学模型的迭代算法及其改进算法的收敛性研究[J]. 系统仿真学报,2014,26(2): 310-314.

    WANG Jun,SUI Yanfeng. Study on convergence and improvement of iteration methods in aero-engine mathematical models[J]. Journal of System Simulation,2014,26(2): 310-314. (in Chinese)
    [16] 白洋,段黎明,柳林,等. 基于改进的混合粒子群算法的变循环发动机模型求解[J]. 推进技术,2014,35(12): 1694-1700.

    BAI Yang,DUAN Liming,LIU Lin,et al. Solving variable cycle engine model based on improved hybrid particle swarm optimization[J]. Journal of Propulsion Technology,2014,35(12): 1694-1700. (in Chinese)
    [17] 肖红亮,李华聪,李嘉,等. 基于QPSO混合算法的变循环发动机建模方法[J]. 北京航空航天大学学报,2018,44(2): 305-315.

    XIAO Hongliang,LI Huachong,LI Jia,et al. Modeling method of variable cycle engine based on QPSO hybrid algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(2): 305-315. (in Chinese)
    [18] 唐世建,童万军. 基于容积法的某涡扇发动机动态建模方法[J]. 航空动力学报,2013,28(3): 709-713. doi: 10.13224/j.cnki.jasp.2013.03.032

    TANG Shijian,TONG Wanjun. Turbofan engine transient modeling based on inter-component volume method[J]. Journal of Aerospace Power,2013,28(3): 709-713. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.03.032
    [19] 黄开明,黄金泉,刘杰,等. 基于无迭代解法的航空发动机实时模型[J]. 航空发动机,2004(2): 35-38. doi: 10.3969/j.issn.1672-3147.2004.02.009

    HUANG Kaiming,HUANG Jinquan,LIU Jie,et al. An aeroengine real rime model based on non-iterative method[J]. Aeroengine,2004(2): 35-38. (in Chinese) doi: 10.3969/j.issn.1672-3147.2004.02.009
    [20] FAWKE A J,SARAVANAMUTTOO H. Digital computer simulation of the dynamic response of a twinspool turbofan with mixed exhaust[J]. Aeronautical Journal,1973,77(753): 471-478.
    [21] 杨刚,孙健国,黄向华,等. 一种不需要迭代的发动机辅助变量建模方法[J]. 航空动力学报,2003,18(2): 289-294. doi: 10.3969/j.issn.1000-8055.2003.02.026

    YANG Gang,SUN Jianguo,HUANG Xianghua,et al. A non-iterative method of aero-engine modeling using complementary variables[J]. Journal of Aerospace Power,2003,18(2): 289-294. (in Chinese) doi: 10.3969/j.issn.1000-8055.2003.02.026
    [22] RAHMAN N U,WHIDBORNE J F. Real-time transient three spool turbofan engine simulation: a hybrid approach[J]. Journal of Engineering for Gas Turbines and Power,2009,131(5): 051602.1-051602.8.
    [23] ROBERTS R A,EASTBOURN S M. Modeling techniques for a computational efficient dynamic turbofan engine model[J]. International Journal of Aerospace Engineering,2014,2014: 283479.1-283479.11.
    [24] SANGHI V,LAKSHMANAN B K. Timescaling control volumes during real time digital simulation of a military turbofan[J]. Journal of Propulsion and Power,2012,18(4): 964-966.
    [25] FAN J Y. The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence[J]. Mathematics of Computation,2012,81(277): 447-466. doi: 10.1090/S0025-5718-2011-02496-8
    [26] FAN J Y. Accelerating the modified Levenberg-Marquardt method for nonlinear equations[J]. Mathematics of Computation,2014,83(287): 1173-1187.
    [27] CHEN L. A high-order modified Levenberg-Marquardt method for systems of nonlinear equations with fourth-order convergence[J]. Applied Mathematics and Computation,2016,285: 79-93. doi: 10.1016/j.amc.2016.03.031
    [28] YANG X. A higher-order Levenberg-Marquardt method for nonlinear equations[J]. Applied Mathematics and Computation,2013,219(22): 10682-10694. doi: 10.1016/j.amc.2013.04.033
    [29] 尹大伟. 航空发动机模型求解算法及性能寻优控制中的参数估计研究[D]. 长沙: 国防科学技术大学, 2011.

    YI Dawei. Algorithms for solving aeroengine nonlinear mathematical model and parameter estimation in performance-seeking control[D]. Changsha: Graduate School of National University of Defense Technology, 2011. (in Chinese)
    [30] LU J,LU F,HUANG J. Performance estimation and fault diagnosis based on Levenberg-Marquardt algorithm for a turbofan engine[J]. Energies,2018,11(1): 181-198. doi: 10.3390/en11010181
    [31] 范金燕, 袁亚湘. 非线性方程组数值解法[M]. 北京: 科学出版社, 2018.
    [32] FAN J Y,YUAN Y X. On the quadratic convergence of the Levenberg-Marquardt method without non-singularity assumption[J]. Computing,2005,74(1): 23-39. doi: 10.1007/s00607-004-0083-1
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  232
  • HTML浏览量:  90
  • PDF量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回