留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下超声速过膨胀燃气射流的流场特性

张春 郁伟 王宝寿

张春,郁伟,王宝寿.水下超声速过膨胀燃气射流的流场特性[J].航空动力学报,2022,37(8):1633‑1642. doi: 10.13224/j.cnki.jasp.20210370
引用本文: 张春,郁伟,王宝寿.水下超声速过膨胀燃气射流的流场特性[J].航空动力学报,2022,37(8):1633‑1642. doi: 10.13224/j.cnki.jasp.20210370
ZHANG Chun,YU Wei,WANG Baoshou.Flow field characteristics of underwater supersonic over⁃expanded gas jet[J].Journal of Aerospace Power,2022,37(8):1633‑1642. doi: 10.13224/j.cnki.jasp.20210370
Citation: ZHANG Chun,YU Wei,WANG Baoshou.Flow field characteristics of underwater supersonic over⁃expanded gas jet[J].Journal of Aerospace Power,2022,37(8):1633‑1642. doi: 10.13224/j.cnki.jasp.20210370

水下超声速过膨胀燃气射流的流场特性

doi: 10.13224/j.cnki.jasp.20210370
详细信息
    作者简介:

    张春(1988-),男,工程师,博士生,主要从事水下发射技术方面的研究。E⁃mail:zh_ch_@live.cn

  • 中图分类号: V231.1

Flow field characteristics of underwater supersonic over⁃expanded gas jet

  • 摘要:

    为研究水下超声速过膨胀燃气射流的流场特性,在压力水筒中开展了大扩张比锥形喷管的固体火箭发动机水下点火实验,并基于雷诺时均Navier⁃Stokes(RANS)方法和流体体积(VOF)模型进行数值求解,分析了过膨胀燃气射流与水介质的相互作用过程。研究表明:超声速过膨胀燃气建立射流通道后,射流核心区长度随喷管落压比的减少而减少;射流核心区剧烈振荡,表现为高频的膨胀和收缩,振荡频率随喷管落压比的减小而增加,范围为100~200 Hz;射流边界不断振荡,并伴随波系结构变化,当过膨胀程度较大时,激波进入喷管使其发生流动分离现象,流动分离点周期性往复移动;分离区内压力脉动没有显著的特征频率,主要集中在100~600 Hz的宽频带,锥形喷管水下流动分离的简易判据为喷管出口压力不低于环境背压的0.44倍。

     

  • 图 1  水下燃气射流实验系统

    Figure 1.  Experimental system of underwater gas jet

    图 2  实验发动机照片

    Figure 2.  Photograph of experimental motor

    图 3  数值计算域与网格

    Figure 3.  Computational domain and mesh

    图 4  仿真与实验结果对比曲线

    Figure 4.  Comparison curve between experimental and simulation results

    图 5  水下燃气射流瞬时形态和时均形态

    Figure 5.  Instantaneous and time averaged forms of underwater gas jet

    图 6  水下燃气射流核心区膨胀和收缩过程

    Figure 6.  Expansion and contraction process of underwater gas jet core

    图 7  典型时刻下的燃气泡形态仿真结果

    Figure 7.  Simulation results of gas bubble shape at typical moments

    图 8  t=100 ms时刻的超声速燃气射流流场图

    Figure 8.  Flow filed graph of supersonic jet at t=100 ms

    图 9  典型射流振荡过程的流场压力分布

    Figure 9.  Pressure distribution of flow field in a typical jet oscillation process

    图 10  典型射流振荡过程的喷管壁面压力分布曲线

    Figure 10.  Pressure distribution curve on nozzle wall in a typical jet oscillation process

    图 12  PN3⁃9At测点压力幅值谱曲线

    Figure 12.  Amplitude spectrum curve of pressure at measuring point PN3⁃9At

    图 13  喷管壁面测点压力平均值与等熵解的对比

    Figure 13.  Comparison of average pressure of measuring point on nozzle wall and isentropic solution

    图 14  喷管壁面附着状态至流动分离的压力特征

    Figure 14.  Pressure characteristics of nozzle wall from adhesion state to flow separation

    表  1  水下超声速过膨胀燃气射流参数

    Table  1.   Parameters of underwater supersonic over⁃expanded gas jet

    测点H/mpa/MPaen
    1100.2500.40
    2300.4250.20
    3500.6170.14
    下载: 导出CSV
  • [1] 张有为.固体火箭发动机水下工作特性的研究[D].合肥:中国科学技术大学,2007.

    ZHANG Youwei.Research on working characteristics of solid rocket engine in water[D].Hefei:University of Science and Technology of China,2007.(in Chinese)
    [2] 鲁传敬,陈方,樊泓,等.导弹水下点火的流体动力研究[J].航空学报,1992,13(4):124⁃130.

    LU Chuanjing,CHEN Fang,FAN Hong,et al.The fluid dynamic research on the underwater ignition of missile[J].Acta Aeronautica et Astronautica Sinica,1992,13(4):124⁃130.(in Chinese)
    [3] 黄楠,陈志华,王争论.水下超声速气体射流线性稳定性研究[J].推进技术,2021,42(3):550⁃559.

    HUANG Nan,CHEN Zhihua,WANG Zhenglun.Linear stability of underwater supersonic gas jet[J].Journal of Propulsion Technology,2021,42(3):550⁃559.(in Chinese)
    [4] 王宝寿,许晟,易淑群,等.水下推力矢量特性试验研究[J].船舶力学,2000,4(5):9⁃15.

    WANG Baoshou,XU Sheng,YI Shuqun,et al.Test studies of underwater thrust vector control performance[J].Journal of Ship Mechanics,2000,4(5):9⁃15.(in Chinese)
    [5] 汤龙生,刘宇,吴智锋,等.水下超声速燃气射流气泡的生长及压力波传播特性实验研究[J].推进技术,2011,32(3):417⁃420.

    TANG Longsheng,LIU Yu,WU Zhifeng,et al.Experimental study on characteristics of bubble growth and pressure wave propagation by supersonic gas jets underwater[J].Journal of Propulsion Technology,2011,32(3):417⁃420.(in Chinese)
    [6] 贾有军,张胜敏,尤俊峰,等.固体发动机水下点火尾流变化过程试验研究[J].固体火箭技术,2015,38(5):660⁃678.

    JIA Youjun,ZHANG Shengmin,YOU Junfeng,et al.Experimental research on the changing process of underwater ignition wake of solid rocket motor[J].Journal of Solid Rocket Technology,2015,38(5):660⁃678.(in Chinese)
    [7] 施红辉,王柏懿,戴振卿.水下超声速气体射流的力学机制研究[J].中国科学:物理 力学 天文学,2010,53(3):527⁃535.

    SHI Honghui,WANG Boyi,DAI Zhenqing.Research on the mechanics of underwater supersonic gas jets[J].Scientia Sinica:Physica,Mechanica and Astronomica,2010,53(3):527⁃535.(in Chinese)
    [8] 许昊,王聪,陆宏志,等.水下超声速气体射流诱导尾空泡实验研究[J].物理学报,2018,67(1):198⁃210.

    XU Hao,WANG Cong,LU Hongzhi,et al.Experimental study on submerged supersonic gaseous jet induced tail cavity[J].Acta Physica Sinica,2018,67(1):198⁃210.(in Chinese)
    [9] TANG Jianing,TSENG Chienchou,WANG Ningfei.Flow structures of gaseous jets injected into water for underwater propulsion[R].AIAA 2011⁃185,2011.
    [10] 朱卫兵,陈宏,黄舜.水下高速射流气泡变化过程数值研究[J].推进技术,2010,31(4):496⁃502.

    ZHU Weibing,CHEN Hong,HUANG Shun.Numerical study of the process of the evolution of bubble of high⁃speed jet underwater[J].Journal of Propulsion Technology,2010,31(4):496⁃502.(in Chinese)
    [11] 张春,郁伟,王宝寿.水下超声速燃气射流的初期流场特性研究[J].兵工学报,2018,39(5):961⁃968.

    ZHANG Chun,YU Wei,WANG Baoshou.Research on the initial flow field characteristics of underwater supersonic gas jets[J].Acta Armamentarii,2018,39(5):961⁃968.(in Chinese)
    [12] 王利利,刘影,李达钦,等.固体火箭发动机水下超音速射流数值研究[J].兵工学报,2019,40(6):1161⁃1170.

    WANG Lili,LIU Ying,LI Daqin,et al.Numerical study of underwater supersonic gas jets for solid rocket engine[J].Acta Armamentarii,2019,40(6):1161⁃1170.(in Chinese)
    [13] 张小圆,李世鹏,杨保雨,等.潜航飞行体深水超音速气体射流的流动稳定性研究[J].兵工学报,2019,40(12):2385⁃2398.

    ZHANG Xiaoyuan,LI Shipeng,YANG Baoyu,et al.Analysis of the flow instability of supersonic gaseous jets for submarine vehicles working in deep water[J].Acta Armamentarii,2019,40(12):2385⁃2398.(in Chinese)
    [14] 张小圆,李世鹏,杨保雨,等.水下固体火箭发动机垂直气体射流结构和推力影响研究[J].推进技术,2021,42(5):961‑969.

    ZHANG Xiaoyuan,LI Shipeng,YANG Baoyu,et al.Flow structures of vertical gaseous jets and effects of thrust of underwater solid rockect motor[J].Journal of Propulsion Technology,2021,42(5):961⁃969.(in Chinese)
    [15] 侯子伟,翁春生,贾芳,等 .水下爆轰燃气泡形态与激波传播过程研究[J].推进技术,2021,42(4):755⁃764.

    HOU Ziwei,WENG Chunsheng,JIA Fang,et al.Gas bubble shape and shock wave propagation process of underwater detonation[J].Journal of Propulsion Technology,2021,42(4):755⁃764.(in Chinese)
    [16] PAPAMOSCHOU D,JOHNSON A.Unsteady phenomena in supersonic nozzle flow separation[R].AIAA 2006⁃3360,2006.
    [17] JOHNSON A,PAPAMOSCHOU D.Shock motion and flow instabilities in supersonic nozzle flow separation[R].AIAA 2008⁃3846,2008.
    [18] OLSON J B,LELE S K.Low⁃frequency unsteadiness in nozzle flow separation[R].AIAA 2012⁃2974,2012.
    [19] 何成军,李建强,范召林.单边膨胀喷管内流动分离非定常特性[J].航空动力学报,2019,34(11):2339⁃2346.

    HE Chengjun,LI Jianqiang,FAN Zhaolin.Flow separation unsteadiness in single expansion ramp nozzle[J].Journal of Aerospace Power,2019,34(11):2339⁃2346.(in Chinese)
    [20] 潘哲,王宝寿,宋志平.火箭发动机水下分离特性试验研究[J].船舶力学,2004,8(4):22⁃26.

    PAN Zhe,WANG Baoshou,SONG Zhiping.Research on underwater rocket separation performance[J].Journal of Ship Mechanics,2004,8(4):22⁃26.(in Chinese)
    [21] 何淼生,覃粒子,刘宇.环喉型圆锥塞式喷管的水下流动分离特性[J].推进技术,2015,36(11):37⁃46.

    HE Miaosheng,QIN Lizi,LIU Yu.Numerical investigation of flow separation in an annular conical aerospike nozzle for underwater propulsion[J].Journal of Propulsion Technology,2015,36(11):37⁃46.(in Chinese)
    [22] 权晓波,王占莹,刘元清,等.水环境下喷管流动分离数值研究[J].固体火箭技术,2020,43(1):8⁃15.

    QUAN Xiaobo,WANG Zhanying,LIU Yuanqing,et al.Numerical simulation research on the flow separation of solid rocket motor in water environment[J].Journal of Solid Rocket Technology,2020,43(1):8⁃15.(in Chinese)
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  216
  • HTML浏览量:  48
  • PDF量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14

目录

    /

    返回文章
    返回