留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合传热下激波对超声速气膜冷却影响

向纪鑫 李志强 刘鹏 王菡

向纪鑫, 李志强, 刘鹏, 等. 耦合传热下激波对超声速气膜冷却影响[J]. 航空动力学报, 2023, 38(2):344-353 doi: 10.13224/j.cnki.jasp.20210413
引用本文: 向纪鑫, 李志强, 刘鹏, 等. 耦合传热下激波对超声速气膜冷却影响[J]. 航空动力学报, 2023, 38(2):344-353 doi: 10.13224/j.cnki.jasp.20210413
XIANG Jixin, LI Zhiqiang, LIU Peng, et al. Effect of shock wave on supersonic film cooling under coupled heat transfer[J]. Journal of Aerospace Power, 2023, 38(2):344-353 doi: 10.13224/j.cnki.jasp.20210413
Citation: XIANG Jixin, LI Zhiqiang, LIU Peng, et al. Effect of shock wave on supersonic film cooling under coupled heat transfer[J]. Journal of Aerospace Power, 2023, 38(2):344-353 doi: 10.13224/j.cnki.jasp.20210413

耦合传热下激波对超声速气膜冷却影响

doi: 10.13224/j.cnki.jasp.20210413
详细信息
    作者简介:

    向纪鑫(1991-),男,讲师,博士,主要从事液体火箭发动机热防护研究

  • 中图分类号: V231.3

Effect of shock wave on supersonic film cooling under coupled heat transfer

  • 摘要:

    针对离散孔式超声速平板气膜冷却,在主流区引入楔角形成激波环境,以研究激波与超声速气膜之间的相互作用。通过计算楔角在0°、15°、20°和25°产生的四种激波强度下,超声速气膜与高温壁面的耦合传热。所得结果表明:适当强度的激波能够抑制气膜入射后产生的反向涡旋对,降低主流对气膜的卷吸,增大壁面平均H2摩尔分数并降低壁面温度。对金属层温度场的分析表明,壁面冷却效果随着激波角的增加而先增加后降低,其中楔角为20°时的流场结构最有利于壁面温度保护。小楔角生成的激波在低冷流马赫数下对冷却效果的改善更明显,大楔角则在高冷流马赫数下更明显,热障涂层(TBC)不影响这种变化趋势;激波的存在削弱了TBC的影响范围。可以揭示超声速气膜在耦合传热条件下的传热机理,为超声速气膜冷却的设计提供参考,或为现有超声速气膜冷却结构的优化提供依据。

     

  • 图 1  计算模型示意图

    Figure 1.  Schematic of computational model

    图 2  计算域网格模型

    Figure 2.  Grids of computational model

    图 3  仿真结果与实验对比

    Figure 3.  Comparison of simulation results with experiment data

    图 4  网格无关性验证

    Figure 4.  Grid independent verification

    图 5  Mac=1.9时近壁面H2摩尔分数分布

    Figure 5.  Distribution of H2 mole fraction near the wall at Mac=1.9

    图 6  Mac=1.9时不同激波强度下的Nu分布

    Figure 6.  Nu distribution of different shock wave intensities at Mac=1.9

    图 7  Mac=1.9时壁面平均H2摩尔分数沿流向变化

    Figure 7.  Transverse distribution of H2 averaged mole fraction on the wall at Mac=1.9

    图 8  Mac=1.9壁面平均表面传热系数沿流向变化

    Figure 8.  Transverse distribution of averaged heat transfer coefficient on the wall at Mac=1.9

    图 9  固体域对称面温度分布(Mac=1.9)

    Figure 9.  Temperature distribution of symmetrical surface in solid region (Mac=1.9)

    图 10  固体域对称面温度分布(Mac=1.6)

    Figure 10.  Temperature distribution of symmetrical surface in solid region (Mac=1.6)

    图 11  固体域对称面温度分布(Mac=1.3)

    Figure 11.  Temperature distribution of symmetrical surface in solid region (Mac=1.3)

    图 12  不同冷流马赫数下的金属层体平均温度

    Figure 12.  Volume-averaged temperature of metal layer at different coolant Mach numbers

    表  1  固体域材料参数

    Table  1.   Material parameters of solid region

    材料厚度/mm导热系数/(W/(m·K))
    8YSZ(陶瓷基体)0.32.16
    NiCoCrAlY(黏结层)0.24.00
    Cooper(金属平板)5.0387.60
    下载: 导出CSV

    表  2  不同工况下的入口参数

    Table  2.   Inlet parameters of different conditions

    工质Map*/kPaT*/KM
    主流空气3.240001600
    冷却剂工况1H21.97504000.3
    工况2H21.65004000.25
    工况3H21.33504000.17
    下载: 导出CSV
  • [1] 葛绍岩,刘登瀛,徐靖中,等.气膜冷却[M].北京: 科学出版社,1985.
    [2] 商圣飞,向树红,姜利祥,等. 不同孔型对高超声速逆喷流气膜冷却影响[J]. 航空动力学报,2020,35(8): 1612-1621.

    SHANG Shengfei,XIANG Shuhong,JIANG Lixiang,et al. Numerical simulation of supersonic gaseous film cooling[J]. Journal of Aerospace Power,2020,35(8): 1612-1621. (in Chinese)
    [3] 王建,孙冰,魏玉坤,等. 超声速气膜冷却数值模拟[J]. 航空动力学报,2008,23(5): 865-870.

    WANG Jian,SUN Bing,WEI Yukun,et al. Numerical simulation of supersonic gaseous film cooling[J]. Journal of Aerospace Power,2008,23(5): 865-870. (in Chinese)
    [4] GROSDEMANGE H. Advanced nozzle extension demonstration for Vulcain Mark Ⅱ application[R]. AIAA-1999-2537,1999.
    [5] FUKUSHIMA Y,NAKATUZI H,KISHIMOTO K,et al. Development status of LE-7A engine[R].AIAA-1997-2817,1997.
    [6] 丁兆波,孙纪国,路晓红,等. 国外典型大推力氢氧发动机推力室技术方案综述[J]. 导弹与航天运载技术,2012(4): 27-30. doi: 10.3969/j.issn.1004-7182.2012.04.006

    DING Zhaobo,SUN Jiguo,LU Xiaohong,et al. Review on technical schemes of foreign large LOx/LH2 thrust chamber[J]. Missiles and Space Vehicles,2012(4): 27-30. (in Chinese) doi: 10.3969/j.issn.1004-7182.2012.04.006
    [7] 彭威,姜培学. 直通道和弯曲通道中超声速气膜冷却研究[J]. 航空动力学报,2008,23(3): 406-409.

    PENG Wei,JIANG Peixue. Investigation of supersonic film cooling in flat and convex channels[J]. Journal of Aerospace Power,2008,23(3): 406-409. (in Chinese)
    [8] KONOPKA M,MEINKE M,WOLFGANG S,et al. Large-eddy simulation of shock/cooling-film interaction[J]. Angewandte Chemie,2013,45(18): 2962-2965.
    [9] KONOPKA M,MEINKE M,SCHRODER W,et al. Large-eddy simulation of high Mach number film cooling with shock-wave interaction[J]. Progress in Flight Physics,2013,5(6): 309-326.
    [10] PENG Wei,JIANG Peixue. Influence of shock wave on supersonic flim cooling[J]. Journal of Spacecraft and Rockets,2009,46(1): 67-73. doi: 10.2514/1.38458
    [11] SUN Xiaokai,NI Hang,PENG Wei,et al. Influence of shock wave impinging region on supersonic film cooling[J]. Chinese Journal of Aeronautics,2021,34(5): 452-465. doi: 10.1016/j.cja.2020.12.012
    [12] 倪航,王明军,彭威,等. 冷却流分段注入对超声速气膜冷却的影响[J]. 工程热物理学报,2021,42(8): 2090-2096.

    NI Hang,WANG Mingjun,PENG Wei,et al. Effect of segmented cooling-stream injection on supersonic film cooling[J]. Journal of Engineering Thermophysics,2021,42(8): 2090-2096. (in Chinese)
    [13] 孙冰,王太平,张佳. 离散孔结构超声速气膜冷却数值模拟[J]. 航空动力学报,2017,32(5): 452-465.

    SUN Bing,WANG Taiping,ZHANG Jia. Numerical simulation of discrete holes supersonic gaseous film cooling[J]. Journal of Aerospace Power,2017,32(5): 452-465. (in Chinese)
    [14] ZHANG Jia,SUN Bing. Experiments on film cooling with sonic injection into a supersonic flow[J]. Journal of Aerospace Power,2015,30(5): 1084-1091.
    [15] 曹学强. 热障涂层材料[M].北京:科学出版社,2007.
    [16] HYDE C R,SMITH B R,SCHETZ J A,et al. Turbulence measurements for heated gas slot injection in supersonic flow[J]. AIAA Journal,1990,28(9): 1605-1614. doi: 10.2514/3.25259
    [17] PENG Wei,JIANG Peixue. Effect of shock wave on supersonic film cooling with a slotted wall[J]. Applied Thermal Engineering,2014,62(1): 187-196. doi: 10.1016/j.applthermaleng.2013.09.013
    [18] ZUO J,ZHANG S,QIN J,et al. Effects of shock waves interaction on hydrocarbon fueled supersonic film cooling with combustion[J]. Aerospace Science and Technology,2021,113(6): 106693.1-106693.14.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  392
  • HTML浏览量:  45
  • PDF量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 网络出版日期:  2022-10-24

目录

    /

    返回文章
    返回