留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LBM的发汗孔隙结构内流动换热性能

陈翔翔 李治达 李芹 郑浩冉 董威

陈翔翔, 李治达, 李芹, 等. 基于LBM的发汗孔隙结构内流动换热性能[J]. 航空动力学报, 2023, 38(2):325-334 doi: 10.13224/j.cnki.jasp.20210425
引用本文: 陈翔翔, 李治达, 李芹, 等. 基于LBM的发汗孔隙结构内流动换热性能[J]. 航空动力学报, 2023, 38(2):325-334 doi: 10.13224/j.cnki.jasp.20210425
CHEN Xiangxiang, LI Zhida, LI Qin, et al. Flow and heat transfer performance in transpiration pore structure based on LBM[J]. Journal of Aerospace Power, 2023, 38(2):325-334 doi: 10.13224/j.cnki.jasp.20210425
Citation: CHEN Xiangxiang, LI Zhida, LI Qin, et al. Flow and heat transfer performance in transpiration pore structure based on LBM[J]. Journal of Aerospace Power, 2023, 38(2):325-334 doi: 10.13224/j.cnki.jasp.20210425

基于LBM的发汗孔隙结构内流动换热性能

doi: 10.13224/j.cnki.jasp.20210425
详细信息
    作者简介:

    陈翔翔(1996-),男,硕士生,主要从航空发动机流动与传热技术研究

    通讯作者:

    董威(1970-),男,教授、博士生导师,博士,主要从航空发动机流动与传热技术研究。E-mail:wdong@sjtu.edu.cn

  • 中图分类号: V231.1

Flow and heat transfer performance in transpiration pore structure based on LBM

  • 摘要:

    以发汗冷却技术为背景,采用D3Q19格子玻尔兹曼方法程序,在孔隙尺度下研究了多孔介质结构对结构温度场的影响。针对球形颗粒堆积结构和随机结构这两种常用的多孔结构,分别计算分析了渗透率和固体温度分布。结果表明:对于颗粒堆积结构,当颗粒规则排列时,其固体温度分布呈明显的阶梯状;而颗粒无规则排列时,固体温度变化趋势比较平稳,并且随着颗粒直径的增大,渗透率增大,固体温度降低。对于随机多孔结构,随着孔隙尺寸减小,渗透率减小,固体温度升高。在0.3~0.5的孔隙率范围内,颗粒堆积结构和随机结构由于内部对流换热强度的不同,固体温度具有不同的变化特点。

     

  • 图 1  发汗冷却示意图

    Figure 1.  Schematic diagram of transpiration cooling

    图 2  D3Q19离散速度示意图

    Figure 2.  Discrete velocity direction of D3Q19

    图 3  重构的多孔介质模型

    Figure 3.  Reconstructed porous media model

    图 4  烧结后的颗粒融合现象

    Figure 4.  Phenomenon of particle fusion after sintering

    图 5  计算模型示意图(单位:mm)

    Figure 5.  Schematic diagram of simulation model (unit:mm)

    图 6  验证算例结果的流线图(方腔自然对流)

    Figure 6.  Streamlines of the validation example (square cavity natural convection)

    图 7  LBM结果与文献[21]的结果的对比

    Figure 7.  Comparison between LMB and Ref.[21] results

    图 8  规则排列和不规则排列球形颗粒多孔介质内部的温度分布

    Figure 8.  Temperature distribution in a porous media with regular and irregularly arranged spherical particles

    图 9  球形颗粒多孔介质的颗粒大小的影响(无规则,n=0.4)

    Figure 9.  Influence of particle size on spherical particles porous media (irregular, n=0.4)

    图 10  cd对QSGS生成的多孔介质的影响

    Figure 10.  Effect of cd on QSGS generated porous media

    图 11  cd对QSGS构造的多孔介质的影响 (n=0.4)

    Figure 11.  Influence of cd on porous media constructed by QSGS (n=0.4)

    图 12  孔隙率的影响

    Figure 12.  Influence of porosity

    图 13  孔隙率与渗透率的关系

    Figure 13.  Relationship between porosity and permeability

    图 14  y方向中截面速度矢量图

    Figure 14.  Velocity vector of cross section in y direction

    表  1  方腔自然对流的LBM结果与基准解的比较

    Table  1.   Comparison of LBM results and reference solutions for natural convection in a square cavity

    Ra数据来源NumaxyNuNuave
    104LBM结果3.56560.86152.2608
    文献[19]3.53090.85312.2448
    105LBM结果7.77160.92314.5271
    文献[19]7.72010.9184.5216
    下载: 导出CSV
  • [1] GULLI S,DDALENA M L. Arc-jet testing of a variable-transpiration-cooled and uncoated carbon–carbon nose cone[J]. Journal of Spacecraft and Rockets,2019,56(3): 780-788. doi: 10.2514/1.A34176
    [2] LIU Yuanqing,JIANG Peixue,XIONG Yanbin,et al. Experimental and numerical investigation of transpiration cooling for sintered porous flat plates[J]. Applied Thermal Engineering,2013,50(1): 997-1007. doi: 10.1016/j.applthermaleng.2012.08.028
    [3] 熊宴斌,祝银海,姜培学,等. 单相液体发汗冷却规律实验[J]. 航空动力学报,2013,28(9): 1956-1961. doi: 10.13224/j.cnki.jasp.2013.09.032

    XIONG Yanbin,ZHU Yinhai,JIANG Peixue,et al. Experiment of transpiration cooling rules of single phase liquid[J]. Journal of Aerospace Power,2013,28(9): 1956-1961. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.09.032
    [4] 马杰,林佳,王建华. 液态水相变发散冷却的实验[J]. 航空动力学报,2014,29(3): 556-562. doi: 10.13224/j.cnki.jasp.2014.03.011

    MA Jie,LIN Jia,WANG Jianhua. Experiment on transpiration cooling with phase change of liquid water[J]. Journal of Aerospace Power,2014,29(3): 556-562. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.03.011
    [5] 金韶山. 液体火箭发动机推力室及钝体头锥发汗冷却研究[D]. 北京: 清华大学, 2008.

    JIN Shaoshan. Research on transpiration cooling of liquid rocket thrust chamber and blunt nose cone[D]. Beijing: Tsinghua University, 2008. (in Chinese)
    [6] NIELD D A, BEJAN A. Convection in porous media[M]. New York: Springer, 2013.
    [7] KOZENY J. Uber kapillare leitung des wasser im boden[J]. Sitzungsber Akad Wiss Wien,1927,136: 271-306.
    [8] LEE S L,YANG J H. Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders[J]. International Journal of Heat and Mass Transfer,1997,40(13): 3149-3155. doi: 10.1016/S0017-9310(96)00347-X
    [9] SHAO Baoli,WANG Shuyan,TIAN Ruichao,et al. FSP-DDF coupling model of LBM for the fluid flow and heat transfer in porous media[J]. Applied Thermal Engineering,2019,157: 113698.1-113698.10.
    [10] LI Qiang,ZHAO Kai,XUAN Yimin. Simulation of flow and heat transfer with evaporation in a porous wick of a CPL evaporator on pore scale by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer,2011,54(13/14): 2890-2901.
    [11] LIU Zhenyu,WU Huiying. Pore-scale study on flow and heat transfer in 3D reconstructed porous media using micro-tomography images[J]. Applied Thermal Engineering,2016,100: 602-610. doi: 10.1016/j.applthermaleng.2016.02.057
    [12] KAN Ankang,MAO Shang,WANG Ning,et al. Simulation and experimental study on thermal conductivity of nano-granule porous material based on lattice-boltzmann method[J]. Journal of Thermal Science,2021,30(1): 248-256. doi: 10.1007/s11630-019-1218-1
    [13] QIAN Yuehong,D’HUMIERES D,LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters,1992,17(6): 479-484. doi: 10.1209/0295-5075/17/6/001
    [14] CHEN Xi,HAN Peng. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms[J]. International Journal of Heat and Fluid Flow,2000,21(4): 463-467. doi: 10.1016/S0142-727X(00)00028-X
    [15] WANG Yuzhang,LI Jiali,LIU Hongzhao,et al. Study on thermal resistance performance of 8YSZ thermal barrier coatings[J]. International Journal of Thermal Sciences,2017,122: 12-25. doi: 10.1016/j.ijthermalsci.2017.08.006
    [16] WANG Moran,WANG Jinku,PAN Ning,et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review: E Statistical Nonlinear and Soft Matter Physics,2007,75(3): 036702.1-036702.10.
    [17] KRÜGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method[M]. Cham, Switzerland: Springer, 2017: 265-282.
    [18] GONG Shuai,CHENG Ping. Direct numerical simulations of pool boiling curves including heater's thermal responses and the effect of vapor phase's thermal conductivity[J]. International Communications in Heat and Mass Transfer,2017,87: 61-71. doi: 10.1016/j.icheatmasstransfer.2017.06.023
    [19] HORTMANN M,PERIC M,SCHEUERER G. Finite volume multigrid prediction of laminar natural convection: bench-mark solutions[J]. International Journal for Numerical Methods in Fluids,1990,11(2): 189-207. doi: 10.1002/fld.1650110206
    [20] ZHANG Mingzhong,YE Guang,BREUGEL K V. Microstructure-based modeling of permeability of cementitious materials using multiple-relaxation-time lattice boltzmann method[J]. Computational Materials Science,2013,68: 142-151. doi: 10.1016/j.commatsci.2012.09.033
    [21] VAN DER HOEF M A,BEETSTRA R,KUIPERS J A M. Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force[J]. Journal of Fluid Mechanics,2005,528: 233-254. doi: 10.1017/S0022112004003295
    [22] KOCH D L,HILL R J. Inertial effects in suspension and porous-media flows[J]. Annual Review of Fluid Mechanics,2001,33: 619-647. doi: 10.1146/annurev.fluid.33.1.619
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  139
  • HTML浏览量:  132
  • PDF量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 网络出版日期:  2022-11-03

目录

    /

    返回文章
    返回