留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跨声速离心压气机多部件耦合优化扩稳

薛鹏飞 刘正先 李孝检 赵明

薛鹏飞, 刘正先, 李孝检, 等. 跨声速离心压气机多部件耦合优化扩稳[J]. 航空动力学报, 2023, 38(2):491-503 doi: 10.13224/j.cnki.jasp.20210427
引用本文: 薛鹏飞, 刘正先, 李孝检, 等. 跨声速离心压气机多部件耦合优化扩稳[J]. 航空动力学报, 2023, 38(2):491-503 doi: 10.13224/j.cnki.jasp.20210427
XUE Pengfei, LIU Zhengxian, LI Xiaojian, et al. Multi-component coupling optimization for stability improvement of transonic centrifugal compressor[J]. Journal of Aerospace Power, 2023, 38(2):491-503 doi: 10.13224/j.cnki.jasp.20210427
Citation: XUE Pengfei, LIU Zhengxian, LI Xiaojian, et al. Multi-component coupling optimization for stability improvement of transonic centrifugal compressor[J]. Journal of Aerospace Power, 2023, 38(2):491-503 doi: 10.13224/j.cnki.jasp.20210427

跨声速离心压气机多部件耦合优化扩稳

doi: 10.13224/j.cnki.jasp.20210427
基金项目: 国家自然科学基金(11972250,12102298); 天津市自然科学基金(19JCZDJC32000); 中国博士后科学基金(2021M702443)
详细信息
    作者简介:

    薛鹏飞(1996-),男,硕士生,研究方向为离心压气机机匣扩稳

    通讯作者:

    李孝检(1991-),男,助理研究员,博士,主要从事叶轮机流动稳定性研究。E-mail: lixiaojian@tju.edu.cn

  • 中图分类号: V231.3

Multi-component coupling optimization for stability improvement of transonic centrifugal compressor

  • 摘要:

    基于最优拉丁超立方采样、多项式代理模型、傅里叶幅值敏感性试验、梯度变异混合优化算法构建了跨声速离心压气机耦合优化方法,实现了自循环机匣处理扩稳的同时不降低等熵效率的目标。耦合优化后压气机气动性能全面提升,设计点和近失速点的等熵效率分别提高2.79%、1.82%,且峰值效率略高于实壁机匣压气机。耦合优化扩稳增效的机理是:自循环机匣抽吸流量增大,更多低能流体被移除;叶轮入口攻角改善,流动分离风险减小;前缘激波与叶尖泄漏涡干涉被抑制,叶轮下游低能流体减少,周向均匀性增强;机匣回流槽入射角增大,叶轮入口径向畸变被削弱;叶轮叶片尾缘安装角及扩压器有叶段尾缘半径的增大弥补了等熵效率损失;叶轮叶片前缘后掠角减小弥补了堵塞流量。

     

  • 图 1  压气机几何模型

    Figure 1.  Geometry model of the compressor

    图 2  计算域网格示意图

    Figure 2.  Schematic diagram of computing domain grid

    图 3  数值模拟与试验结果对比

    Figure 3.  Comparison of numerical and experimental results

    图 4  自循环机匣几何参数

    Figure 4.  Geometry parameters of self-recirculation casing

    图 5  设计工况等熵效率交叉验证结果

    Figure 5.  Cross-validation results of design isentropic efficiency

    图 6  自循环机匣设计空间全局敏感性分析

    Figure 6.  Global sensitivity analysis of design space for self-recirculation casing

    图 7  叶轮与扩压器关键参数对压气机气动性能的影响

    Figure 7.  Influences of key parameters of impeller and diffuser on compressor’s aerodynamic performances

    图 8  实壁机匣、基准自循环机匣、耦合优化压气机性能曲线对比

    Figure 8.  Comparison of performance curves among solid casing, baseline self-recirculation casing and coupling optimization compressors

    图 9  优化前后叶轮90%叶高相对马赫数云图

    Figure 9.  Relative Mach number at 90% span of the impeller before and after optimization

    图 10  优化前后叶轮90%叶高叶片表面静压分布

    Figure 10.  Static pressure on blade surface at 90% span of the impeller before and after optimization

    图 11  优化前后自循环机匣回流量

    Figure 11.  Recirculation flow of self-recirculation casing before and after optimization

    图 12  优化前后压气机子午速度分布及局部流线图

    Figure 12.  Meridional velocity and local streamlines of the compressor before and after optimization

    图 13  优化前后叶轮90%叶高相对马赫数

    Figure 13.  Relative Mach number at 90% span of the impeller before and after optimization

    图 14  优化前后压气机90%叶高熵分布

    Figure 14.  Entropy distribution at 90% span of the impeller before and after optimization

    图 15  优化前后扩压器90%叶高熵分布

    Figure 15.  Entropy distribution at 90% span of the diffuser before and after optimization

    图 16  优化前后压气机子午面相对马赫数分布

    Figure 16.  Relative Mach number distribution on meridian plane of the compressor before and after optimization

    表  1  离心压气机主要设计参数

    Table  1.   Key design parameters of the centrifugal compressor

    设计参数数值
    设计转速/(r/min)94500
    设计流量/(kg/s)0.86
    设计总压比5.923
    机器马赫数1.7
    叶轮主/分流叶片数9/9
    叶轮叶顶间隙/mm0.5
    叶轮出口直径/mm118
    扩压器叶片数12
    扩压器出口直径/mm
    (含有叶与无叶段)
    200
    下载: 导出CSV

    表  2  不同转速下最大相对误差

    Table  2.   Maximum relative errors under different rotating speeds

    转速等熵效率
    最大误差/%
    总压比
    最大误差/%
    100%设计转速1.35.4
    90%设计转速1.21.9
    80%设计转速0.70.7
    下载: 导出CSV

    表  3  基准自循环机匣几何参数范围

    Table  3.   Value ranges of geometry parameters of the baseline self-recirculation casing

    几何参数下限值基准值上限值
    空腔高度x1/mm2629.3938
    回流槽轴向位置x2/mm−75−65.32−55
    回流槽入射角x3/(°)120135160
    回流槽径向位置x4/mm4553.0561
    空腔径向位置x5/mm5958.1164
    抽吸槽轴向位置x6/mm−36−30.83−25
    抽吸槽宽度x7/mm12.54
    空腔长度x8/mm8594.5104
    空腔上倾斜角x9/(°)01.53
    空腔下倾斜角x10/(°)01.53
    抽吸槽角度x11/(°)90110132
    下载: 导出CSV

    表  4  不同代理模型方均根误差

    Table  4.   Root mean square error of different surrogate models

    模型方均根误差
    堵塞
    流量
    设计点
    等熵效率
    设计点
    总压比
    近失速点
    等熵效率
    近失速点
    总压比
    高斯过程回归0.0620.0660.0650.1450.100
    径向基神经网络0.0450.0550.0520.1030.090
    4阶多项式线性
    回归模型
    0.0460.0630.0390.0710.096
    下载: 导出CSV

    表  5  压气机耦合优化设计变量基准值及变化范围

    Table  5.   Baseline values and variation ranges of design variables for compressor coupling optimization

    耦合优化设计变量下限值基准值上限值
    叶轮叶片前缘后掠角/(°)155
    叶轮叶片尾缘叶顶安装角/(°)4344.846
    叶轮叶片尾缘叶根安装角/(°)53.755.256.2
    扩压器有叶段尾缘半径/mm797982
    机匣回流槽入射角/(°)135135160
    机匣抽吸槽轴向位置/mm−36−30.8−25
    机匣抽吸槽宽度/mm12.54
    下载: 导出CSV

    表  6  压气机优化前后主要性能指标

    Table  6.   Key performance indicators of compressor before and after optimization

    性能指标基准机匣耦合优化增量/%
    设计点等熵效率/%73.6175.722.79
    设计点总压比5.9236.1834.21
    近失速点等熵效率/%71.7573.081.82
    近失速点总压比6.2556.4172.52
    稳定工况范围/%20.8722.922.05
    下载: 导出CSV

    表  7  压气机优化前后设计变量对比

    Table  7.   Comparison of design variables of the compressor before and after optimization

    设计变量基准
    机匣
    耦合
    优化
    叶轮叶片前缘后掠角/(°)52.31
    叶轮叶片尾缘叶顶安装角/(°)44.844.81
    叶轮叶片尾缘叶根安装角/(°)55.255.75
    扩压器有叶段尾缘半径/mm7981.3
    机匣回流槽入射角/(°)135160
    机匣抽吸槽轴向位置/mm−30.8−31.6
    机匣抽吸槽宽度/mm2.502.49
    下载: 导出CSV
  • [1] 张学锋,卢新根,韩戈,等. 高压比离心压气机设计及试验验证[J]. 燃气轮机技术,2014,27(4): 31-36. doi: 10.3969/j.issn.1009-2889.2014.04.006

    ZHANG Xuefeng,LU Xingen,HAN Ge,et al. Design and experimental validation of a high pressure ratio centrifugal compressor[J]. Gas Turbine Technology,2014,27(4): 31-36. (in Chinese) doi: 10.3969/j.issn.1009-2889.2014.04.006
    [2] 李培元,顾春伟. 高压比离心压气机设计与分析[J]. 工程热物理学报,2013,34(10): 1823-1827.

    LI Peiyuan,GU Chunwei. Design and analysis of high pressure ratio centrifugal compressor[J]. Journal of Engineering Thermophysics,2013,34(10): 1823-1827. (in Chinese)
    [3] JONNA T,AKI G,AHTI J V,et al. Flow control methods and their applicability in low-Reynolds-number centrifugal compressors: a review[J]. International Journal of Turbomachinery, Propulsion and Power,2018,3(1): 1-38.
    [4] 郑新前,张扬军,郭宫达,等. 跨声速离心压气机机匣处理扩稳研究[J]. 工程热物理学报,2010,31(12): 2023-2026.

    ZHENG Xinqian,ZHANG Yangjun,GUO Gongda,et al. Stability improvement of transonic centrifugal compressor by casing treatment[J]. Journal of Engineering Thermophysics,2010,31(12): 2023-2026. (in Chinese)
    [5] YANG Mingyang,RICARDO M,ZHANG Yangjun,et al. Effect of self-recirculation-casing treatment on high pressure ratio centrifugal compressor[J]. Journal of Propulsion and Power,2016,32(3): 602-610. doi: 10.2514/1.B35438
    [6] CHEN Hua,LEI V M. Casing treatment and inlet swirl of centrifugal compressors[J]. Journal of Turbomachinery,2013,135(4): 823-830.
    [7] QIN Mingxu, HU Leon, SUN Harold, et al. Flow loss mechanism and modeling in a centrifugal compressor casing [R]. Seoul, South Korea: ASME Turbo Expo 2016 Turbomachinery Technical Conference and Exposition, 2016.
    [8] JUNG S, PELTON R. Numerically derived design guidelines of self recirculation casing treatment for industrial centrifugal compressors [R]. Seoul, South Korea: ASME Turbo Expo 2016 Turbomachinery Techical Conference and Exposition, 2016.
    [9] HU Liangjun,SUN Harold,YI James,et al. Numerical and experimental investigation of a compressor with active self-recirculation casing treatment for a wide operation range[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2013,227(9): 1227-1241. doi: 10.1177/0954407013486741
    [10] SIVAGNANASUNDARAM S,SPENCE S,EARLY J,et al. An impact of various shroud bleed slot configurations and cavity vanes on compressor map width and the inducer flow field[J]. Journal of Turbomachinery,2013,135(4): 2009-2021.
    [11] CHENG Binbin, SAKAGUCHI D. Optimization of a recirculation flow type casing treatment with guide vanes for centrifugal compressors[C]//2019 5th International Conference on Control, Automation and Robotics (ICCAR). Beijing: IEEE, 2019: 702-707.
    [12] LI Xiaojian,LIU Zhengxian,ZHAO Yijia. Redesign of casing treatment for a transonic centrifugal compressor based on a hybrid global optimization method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2021,236(7): 3398-3417. doi: 10.1177/09544062211039878
    [13] HAZBY H R, XU Liping. Numerical investigation of the effects of leading edge sweep in a small transonic impeller[R]. Graz, Austria: 8th European Turbomachinery Conference, 2009.
    [14] 郭龙凯,刘艳明,郑新前,等. 混合型前缘掠对离心压气机气动性能的影响[J]. 内燃机学报,2016,34(3): 281-287. doi: 10.16236/j.cnki.nrjxb.201603038

    GUO Longkai,LIU Yanming,ZHENG Xinqian,et al. Effect of hybrid leading edge sweep on the aerodynamic performance of small scale transonic centrifugal compressor[J]. Transactions of CSICE,2016,34(3): 281-287. (in Chinese) doi: 10.16236/j.cnki.nrjxb.201603038
    [15] 郭龙凯,刘艳明,崔庆,等. 叶片前缘不同后掠角对离心压气机气动性能的影响[J]. 热能动力工程,2016,31(4): 45-51. doi: 10.16146/j.cnki.rndlgc.2016.04.008

    GUO Longkai,LIU Yanming,CUI Qing,et al. Back-swept leading edge effects on aerodynamic performance of small scale transonic centrifugal compressure[J]. Journal of Engineering for Thermal Energy and Power,2016,31(4): 45-51. (in Chinese) doi: 10.16146/j.cnki.rndlgc.2016.04.008
    [16] HE Xiao,ZHENG Xinqian. Mechanisms of sweep on the performance of transonic centrifugal compressor impellers[J]. Applied Sciences,2017,7(10): 1-22.
    [17] LI Xianjian,ZHAO Yijia,LIU Zhengxian. A novel global optimization algorithm and data-mining methods for turbomachinery design[J]. Structural and Multidisciplinary Optimization,2019,60(2): 581-612. doi: 10.1007/s00158-019-02227-5
    [18] LI Xiaojian,LIU Zhengxian,LIN Yujing. Multipoint and multiobjective optimization of a centrifugal compressor impeller based on genetic algorithm[J]. Mathematical Problems in Engineering,2017,2017(1): 6263274.1-6263274.18.
    [19] LIANG Qi,ZUO Zhitao,ZHOU Xin,et al. Design of a centrifugal compressor with low solidity vaned diffuser (LSVD) for large-scale compressed air energy storage (CAES)[J]. Journal of Thermal Science,2020,29(2): 423-434. doi: 10.1007/s11630-019-1204-7
    [20] 赵磊,陈顺,高天宇,等. 稠度对跨音速叶片扩压器流场影响的数值研究[J]. 风机技术,2019,61(5): 13-18. doi: 10.16492/j.fjjs.2019.05.0003

    ZHAO Lei,CHEN Shun,GAO Tianyu,et al. Numerical investigation on the effect of solidity on the flow field of transonic radial diffuser[J]. Chinese Journal of Turbomachinery,2019,61(5): 13-18. (in Chinese) doi: 10.16492/j.fjjs.2019.05.0003
    [21] BOCCAZZ A, SALA R, GAETAN P. Influence of the diffuser vane setting angle on the flow field in a radial pump[C]// Proceedings of the 9th European Turbomachinery Conference. Istanbul: ETC, 2011: 721-731.
    [22] ZHANG Yingjie,ZHANG Ziqing,DONG Xu,et al. Effects of unsteady interaction on the performance of an ultra-high-pressure-ratio centrifugal compressor[J]. Aerospace Science and Technology,2020,105: 1-13.
    [23] CHO I,LEE Y,RYU D,et al. Comparison study of sampling methods for computer experiments using various performance measures[J]. Structural and Multidisciplinary Optimization,2017,55(1): 221-235. doi: 10.1007/s00158-016-1490-6
    [24] Scikit-Learn, Machine learning in Python.Supervised learning[EB/OL]. [2021-07-09]. https://scikit-learn.org/stable/supervised_learning.html#supervised-learning.
    [25] JIN R,CHEN W,SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization,2001,23(1): 1-13. doi: 10.1007/s00158-001-0160-4
    [26] CANNAVÓ F. Sensitivity analysis for volcanic source modeling quality assessment and model selection[J]. Computers and Geosciences,2012,44: 52-59.
    [27] 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索[J]. 物理学报,2015,64(6): 069201.1-069201.7. doi: 10.7498/aps.64.069201

    LI Hongqi. Applications of random balance design Fourier amplitude sensitive test and extended Fourier amplitude sensitive text in the parameter sensitivity analysis of land surface process model[J]. Acta Physica Sinica,2015,64(6): 069201.1-069201.7. (in Chinese) doi: 10.7498/aps.64.069201
    [28] CUKIER R I,FORTUIN C M,SHULER K E. Study of the sensitive of coupled reaction systems to uncertainties in rate coefficients. I Theory[J]. The Journal of Chemical Physics,1973,59(8): 3973-3878.
    [29] ZHOU Tao,LIU Zhengxian,LI Xiaojian,et al. Thermodynamic design space data-mining and multi-objective optimization of SCO2 Brayton cycles[J]. Energy Conversion and Management,2021,249: 1-14.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  132
  • HTML浏览量:  113
  • PDF量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 网络出版日期:  2022-10-25

目录

    /

    返回文章
    返回