留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同插值方法对残缺环阵声源定位的影响

李梦璇 杨明绥 马威

李梦璇, 杨明绥, 马威. 不同插值方法对残缺环阵声源定位的影响[J]. 航空动力学报, 2023, 38(2):394-407 doi: 10.13224/j.cnki.jasp.20210431
引用本文: 李梦璇, 杨明绥, 马威. 不同插值方法对残缺环阵声源定位的影响[J]. 航空动力学报, 2023, 38(2):394-407 doi: 10.13224/j.cnki.jasp.20210431
LI Mengxuan, YANG Mingsui, MA Wei. Influence of different interpolation methods on sound source localization of incomplete microphone array[J]. Journal of Aerospace Power, 2023, 38(2):394-407 doi: 10.13224/j.cnki.jasp.20210431
Citation: LI Mengxuan, YANG Mingsui, MA Wei. Influence of different interpolation methods on sound source localization of incomplete microphone array[J]. Journal of Aerospace Power, 2023, 38(2):394-407 doi: 10.13224/j.cnki.jasp.20210431

不同插值方法对残缺环阵声源定位的影响

doi: 10.13224/j.cnki.jasp.20210431
基金项目: 国家科技重大专项(2017-Ⅱ-003-0015)
详细信息
    作者简介:

    李梦璇(1995-),女,硕士生,主要从事噪声测量研究

    通讯作者:

    马威(1981-),男,副教授,博士,主要从事气动噪声测量研究。E-mail:mawei@sjtu.edu.cn

  • 中图分类号: V211.71

Influence of different interpolation methods on sound source localization of incomplete microphone array

  • 摘要:

    研究了利用不完整麦克风阵列进行声源定位的算法,通过修正傅里叶插值、B样条插值和三次样条插值对残缺麦克风阵列的交叉互谱矩阵的插值补偿,获得了声源定位算法。通过数值模拟对声源定位算法进行了验证,发现在波束形成的声源强度上,傅里叶插值模拟结果最大偏差达到5.21 dB,B样条插值为1.17 dB,三次样条插值为0.80 dB;在声源位置偏差上,傅里叶插值为0.04 m,B样条插值为0.01 m,三次样条插值为0.01 m。结果表明傅里叶插值计算得到的声源定位的强度、位置精度和动态性能最差,三次样条插值最优,B样条插值表现一般。实验验证也得出类似的结论,因此利用三次样条插值计算不完整麦克风阵列的交叉互谱矩阵最佳。

     

  • 图 1  不完整麦克风阵列

    Figure 1.  Incomplete microphone array

    图 2  误差分析流程

    Figure 2.  Error analysis process

    图 3  实验装置

    Figure 3.  Experiment setup

    图 4  算法原理示意图

    Figure 4.  Schematic diagram of algorithm principle

    图 5  声源分布

    Figure 5.  Sound source distribution

    图 6  由傅里叶插值得到的波束成形数值模拟结果

    Figure 6.  Beamforming simulated results obtained by Fourier interpolation

    图 7  由B样条插值得到的波束形成数值模拟结果

    Figure 7.  Beamforming simulated results obtained by B-spline interpolation

    图 8  由三次样条插值得到的波束成形数值模拟结果

    Figure 8.  Beamforming simulated results obtained by cubic spline Interpolation

    图 9  由傅里叶插值得到的波束成形实验结果

    Figure 9.  Beamforming experimental results obtained by Fourier interpolation

    图 10  由B样条插值得到的波束形成的实验结果

    Figure 10.  Beamforming experimental results obtained by B-spline interpolation

    图 11  由三次样条插值得到的波束成形的实验结果

    Figure 11.  Beamforming experimental results obtained by cubic spline interpolation

    图 12  声强变化图

    Figure 12.  Change of sound intensity

    图 13  声源定位误差图

    Figure 13.  Sound source positioning error

    图 14  三种插值方法的空间分辨率和动态范围的数值模拟结果比较

    Figure 14.  Comparison of simulated results of spatial resolution and dynamic range with three interpolation methods

    图 15  三种插值方法的空间分辨率和动态范围的实验值比较

    Figure 15.  Comparison of experimental results of spatial resolution and dynamic range with three interpolation methods

    表  1  声源位置和强度设置

    Table  1.   Sound source localization and intensity settings

    参数数值及说明
    麦克风总数40
    网格点总数61×61
    扫描平面边长/m0.50
    阵列孔径/m0.50
    阵列到扫描平面距离/m1.0
    声源转速/(r/min)1500
    转向顺时针
    声源信号白噪声
    采样频率/kHz48
    采样时间/s10
    声源旋转半径/m0.35
    傅里叶分块1024
    傅里叶重叠度/%50
    下载: 导出CSV

    表  2  由傅里叶插值得到的声源位置坐标和声压大小变化的数值模拟结果

    Table  2.   Simulated results of variations in source position coordinates and sound pressure obtained by Fourier interpolation

    减少麦克风
    个数
    最大声源
    位置坐标/m
    最大声压
    数值/dB
    0(0, −0.33, 1.0)87.58
    1(0, −0.37, 1.0)83.22
    3(0, −0.37, 1.0)82.78
    5(−0.02, −0.35, 1.0)82.48
    7(−0.03, −0.33, 1.0)82.37
    下载: 导出CSV

    表  3  由B样条插值得到的声源位置坐标和声压大小变化的数值模拟结果

    Table  3.   Simulated results of variation of source position coordinates and sound pressure obtained by B-spline interpolation

    减少麦克风
    个数
    最大声源
    位置坐标/m
    最大声压
    数值/dB
    0(0, −0.33, 1.00)87.55
    1(0, −0.33, 1.00)87.55
    3(0, −0.34, 1.00)87.40
    5(0, −0.34, 1.00)86.97
    7(0, −0.34, 1.00)86.38
    下载: 导出CSV

    表  4  由三次样条插值得到的声源位置坐标和声压大小变化的数值模拟结果

    Table  4.   Simulated results of variations of source position coordinates and sound pressure obtained by cubic spline interpolation

    减少麦克风
    个数
    最大声源
    位置坐标/m
    最大声压
    数值/dB
    0(0, −0.33, 1.00)87.14
    1(0, −0.33, 1.00)87.17
    3(0, −0.33, 1.00)87.11
    5(0, −0.34, 1.00)86.77
    7(0, −0.34, 1.00)86.34
    下载: 导出CSV

    表  5  由傅里叶插值得到声源位置坐标和声压大小变化的实验结果

    Table  5.   Experimental results of variations in source position coordinates and sound pressure obtained by Fourier interpolation

    减少麦克风
    个数
    最大声源
    位置坐标/m
    最大声压
    数值/dB
    0(0.03, −0.32, 1.00)57.41
    1(0, −0.33, 1.00)56.07
    3(0, −0.32, 1.00)55.51
    5(0, −0.32, 1.00)55.16
    7定位失效失效
    下载: 导出CSV

    表  6  由B样条插值得到声源位置坐标和声压大小变化的实验结果

    Table  6.   Experimental results of variation of source position coordinates and sound pressure obtained by B-spline interpolation

    减少麦克风
    个数
    最大声源
    位置坐标/m
    最大声压
    数值/dB
    0(−0.03, 0.32, 1.0)57.41
    1(−0.02, 0.30, 1.0)57.08
    3(−0.03, 0.28, 1.0)56.75
    5(−0.03, 0.26, 1.0)56.60
    7定位失效失效
    下载: 导出CSV

    表  7  由三次样条插值得到声源位置坐标和声压大小变化的实验结果

    Table  7.   Experimental results of variations of source position coordinates and sound pressure obtained by cubic spline interpolation

    减少麦克风
    个数
    最大声源
    位置坐标/m
    最大声压
    数值/dB
    0(−0.02, 0.32, 1.00)57.38
    1(−0.03, 0.32, 1.00)57.21
    3(−0.03, 0.30, 1.00)56.79
    5(0, 0.28, 1.00)56.50
    7定位失效失效
    下载: 导出CSV
  • [1] 吴志刚. 直升机旋翼噪声实验室(全消声室)设计[J]. 噪声与振动控制,2020,40(2): 207-209. doi: 10.3969/j.issn.1006-1355.2020.02.037

    WU Zhigang. Design of helicopter rotor noise laboratory (full anechoic chamber)[J]. Noise and Vibration Control,2020,40(2): 207-209. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.02.037
    [2] MICHEL U. History of acoustic beamforming[C]//1st Berlin Beamforming Conference. Berlin: Springer, 2006: 1-17.
    [3] DOUGHERTY R P. Beamforming in acoustic testing[M]. Berlin: Springer, 2002.
    [4] SIJTSMA P, OERLEMANS S, HOLTHUSEN H. Location of rotating sources by phased array measurement[R]. AIAA-2001-2167, 2001.
    [5] 莫品西. 旋翼气动噪声的声呈像理论与试验研究[D]. 上海: 上海交通大学, 2018.

    MO Pinxi. Theoretical and experimental study on the imaging of rotor aerodynamic noise[D]. Shanghai: Shanghai Jiao Tong University, 2018. (in Chinese)
    [6] BROOKS T F,HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration,2004,294(4): 856-879.
    [7] SIJTSMA P. CLEAN based on spatial source coherence[J]. International Journal of Aeroacoustics,2009,6(4): 357-374.
    [8] PANNERT W,MAIER C. Rotating beamforming motion compensation in the frequency domain and application of high-resolution beamforming algorithms[J]. Journal of Sound and Vibration,2014,333(7): 1899-1912. doi: 10.1016/j.jsv.2013.11.031
    [9] LOWIS C R, JOSEPH P F. Inversion technique for determining the strength of rotating broadband sources in ducts[R]. AIAA- 2005-3018, 2005.
    [10] LOWIS C R, JOSEPH P F. A focused beam former technique for separating rotor and stator based broadband sources[R]. AIAA-2006-2710, 2006.
    [11] LOWIS C R,JOSEPH P F. Determining the strength of rotating broadband sources in ducts by inverse methods[J]. Journal of Sound and Vibration,2006,295(3): 614-632.
    [12] HEROLD G,SARRADJ E. Microphone array method for the characterization of rotating sound sources in axial fans[J]. Noise Control Engineering Journal,2015,63(6): 546-551. doi: 10.3397/1/376348
    [13] HEROLD G, SARRADJ E. Frequency domain deconvolution for rotating sources on an axial fan[C]// 6th Berlin Beamforming Conference. Berlin: Springer, 2016: BeBeC-2016-D18.1-BeBeC-2016-D18.8.
    [14] MA W,BAO H,ZHANG C,et al. Beamforming of phased microphone array for rotating sound source localization[J]. Journal of Sound and Vibration,2020,467: 115064.1-115064.17. doi: 10.1016/j.jsv.2019.115064
    [15] MA W, ZHANG C. Doppler effect in the time-domain beamforming for rotating sound source identification[J]. The Journal of the Acoustical Society of America, 2020, 148(1): 430-443.
    [16] MA W,ZHANG C. A frequency-domain beamforming for rotating sound source identification[J]. The Journal of the Acoustical Society of America,2020,148(3): 1602-1613.
    [17] ZHOU W, BAO H, MA W, et al. Parameter investigation of ring microphone array for rotating sound source localization[R]. Beijing:Global Power and Propulsion Society Conference GPPS-BJ-2019-0007, 2019.
    [18] 李晓东,孙晓峰,胡宗安. 一种螺旋桨的气动声学设计与实验验证[J]. 航空动力学报,1991,6(4): 317-319. doi: 10.13224/j.cnki.jasp.1991.04.008

    LI Xiaodong,SUN Xiaofeng,HU Zongan. Aeroacoustical modification of a propeller[J]. Journal of Aerospace Power,1991,6(4): 317-319. (in Chinese) doi: 10.13224/j.cnki.jasp.1991.04.008
    [19] 伍岳,杨兵,贾少红,等. 基于波束形成方法的风力机叶片气动噪声定位研究[J]. 工程热物理学报,2013,34(12): 2262-2265.

    WU Yue,YANG Bing,JIA Shaohong,et al. Locating of acoustic sources on wind turbine blades based on beamforming[J]. Journal of Engineering Thermophysics,2013,34(12): 2262-2265. (in Chinese)
    [20] 鲍欢. 麦克风阵列自由场旋转波束形成技术研究[D]. 上海: 上海交通大学, 2020.

    BAO Huan. Research on free-field rotating beamforming of microphone array[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese)
    [21] MA W,LIU X. DAMAS with compression computational grid for acoustic source mapping[J]. Journal of Sound and Vibration,2017,410: 473-484. doi: 10.1016/j.jsv.2017.03.027
    [22] SARRADJ E,HEROLD G. A Python framework for microphone array data processing[J]. Applied Acoustics,2017,116: 50-58. doi: 10.1016/j.apacoust.2016.09.015
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  136
  • HTML浏览量:  50
  • PDF量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回