留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑噪声抑制的高超声速风洞气动力识别方法

马贵林 李世超 高宏力 王钦超 伍广 段志琴

马贵林, 李世超, 高宏力, 等. 考虑噪声抑制的高超声速风洞气动力识别方法[J]. 航空动力学报, 2023, 38(2):420-430 doi: 10.13224/j.cnki.jasp.20210437
引用本文: 马贵林, 李世超, 高宏力, 等. 考虑噪声抑制的高超声速风洞气动力识别方法[J]. 航空动力学报, 2023, 38(2):420-430 doi: 10.13224/j.cnki.jasp.20210437
MA Guilin, LI Shichao, GAO Hongli, et al. Hypersonic wind tunnel aerodynamic identification method considering noise suppression[J]. Journal of Aerospace Power, 2023, 38(2):420-430 doi: 10.13224/j.cnki.jasp.20210437
Citation: MA Guilin, LI Shichao, GAO Hongli, et al. Hypersonic wind tunnel aerodynamic identification method considering noise suppression[J]. Journal of Aerospace Power, 2023, 38(2):420-430 doi: 10.13224/j.cnki.jasp.20210437

考虑噪声抑制的高超声速风洞气动力识别方法

doi: 10.13224/j.cnki.jasp.20210437
基金项目: 国家自然科学基金(52105562,51775452)
详细信息
    作者简介:

    马贵林(1998-),男,硕士生,研究方向为风洞设计与测量技术。E-mail:mgl16@126.com

    通讯作者:

    李世超(1990-),男,助理研究员,博士,研究方向为风洞设计与测量技术。E-mail:lsc13622162338@163.com

  • 中图分类号: V221.3

Hypersonic wind tunnel aerodynamic identification method considering noise suppression

  • 摘要:

    对于风洞试验中全尺寸模型试验的非平稳信号进行载荷辨识仍存在诸多问题。针对全尺度模型试验的非平稳信号载荷辨识提出了一种基于深度残差收缩网络(DRSN)深度学习技术的智能载荷辨识方法,该方法通过深度学习提取测力系统输出数据中的气动力、惯性力和噪声等特征,通过注意力机制对每组数据进行获取阈值,再通过软阈值函数对特征进行滤波降噪,有效辨识出测力系统响应信号中的惯性力分量并进行剔除,实现气动力载荷辨识。在测试验证中,均值法的辨识精度为85%以上,DRSN模型的辨识精度为94%以上,证明DRSN模型能有效降低噪声和惯性力对于载荷辨识的干扰,用于非平稳信号的载荷辨识具有精度高、可靠性好等特点。

     

  • 图 1  平稳信号

    Figure 1.  Stationary signal

    图 2  非平稳信号

    Figure 2.  Nonstationary signal

    图 3  基于DRSN网络的载荷辨识方法

    Figure 3.  Load identification method based on DRSN network

    图 4  DRSN模型

    Figure 4.  DRSN model

    图 5  深度残差网络模型

    Figure 5.  Deep residual network model

    图 6  SENet模型

    Figure 6.  SENet model

    图 7  SENet模型工作流程

    Figure 7.  SENet model workflow

    图 8  软阈值函数

    Figure 8.  Soft threshold function

    图 9  软阈值函数导数

    Figure 9.  Soft threshold function derivative

    图 10  软阈值函数工作流程

    Figure 10.  Soft threshold function workflow

    图 11  悬挂测力系统

    Figure 11.  Suspension force measuring system

    图 12  悬挂测力系统结构及原理

    Figure 12.  Structure and principle of suspension force measuring system

    图 13  悬挂测力试验台装置

    Figure 13.  Suspension force measuring system test bench

    图 14  力分解示意图

    Figure 14.  Schematic diagram of force decomposition

    图 15  样本提取过程

    Figure 15.  Sample extraction process

    图 16  训练过程

    Figure 16.  Training process

    图 17  训练结果

    Figure 17.  Training results

    图 18  预测结果

    Figure 18.  Prediction results

    表  1  DRSN参数

    Table  1.   DRSN parameters

    参数数值及说明
    网络结构DRSN
    优化器Adam
    误差损失MSE
    初始学习率0.05
    最小批量16
    最大训练次数500
    下载: 导出CSV

    表  2  试验结果对比

    Table  2.   Comparison of test results

    组别序号载荷识别精度/%
    DRSN法均值法
    197.48685.170
    295.56387.029
    398.92285.105
    499.81384.127
    599.74682.226
    696.91085.263
    798.89787.492
    898.21485.600
    994.71583.827
    1096.41383.690
    1198.67386.260
    1299.51285.830
    下载: 导出CSV
  • [1] 唐志共,许晓斌,杨彦广,等. 高超声速风洞气动力试验技术进展[J]. 航空学报,2015,36(1): 86-97.

    TANG Zhigong,XU Xiaobin,YANG Yanguang,et al. Progress in aerodynamic test technology of hypersonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2015,36(1): 86-97. (in Chinese)
    [2] 田建明,景建斌,韩广岐. 高超声速飞行器地面试验方法[J]. 探测与控制学报,2013,35(5): 57-60.

    TIAN Jianming,JING Jianbin,HAN Guangqi. Ground test method of hypersonic vehicle[J]. Journal of Detection and Control,2013,35(5): 57-60. (in Chinese)
    [3] LI S,LI K,LIU B,et al. A new dynamic modelling methodology of a force measuring system for hypersonic impulse wind tunnel[J]. Measurement,2020,164(11): 108012.1-108012.15.
    [4] 李世超,高宏力,刘勃锴,等. 脉冲燃烧风洞测力系统传力特性研究[J]. 振动与冲击,2018,37(21): 117-125,142.

    LI Shichao,GAO Hongli,LIU Bokai,et al. Force transmission characteristics offorce-measuring system in impulse combustion wind tunnel[J]. Journal of Vibration and Shock,2018,37(21): 117-125,142. (in Chinese)
    [5] 吕金洲,张小庆,赵晓男,等. 脉冲风洞测力系统结构动力学特性[J]. 西南交通大学学报,2019,54(6): 1305-1313. doi: 10.3969/j.issn.0258-2724.20170737

    LÜ Jinzhou,ZHANG Xiaoqing,ZHAO Xiaonan,et al. Structural dynamic characteristics of force measurement system in pulse wind tunnel[J]. Journal of Southwest Jiaotong University,2019,54(6): 1305-1313. (in Chinese) doi: 10.3969/j.issn.0258-2724.20170737
    [6] 张小庆,乐嘉陵. 脉冲式燃烧风洞起动特性数值研究[J]. 航空动力学报,2008,23(9): 1568-1572.

    ZHANG Xiaoqing,LE Jialing. Numerical study on starting characteristics of pulse combustion wind tunnel[J]. Journal of Aerospace Power,2008,23(9): 1568-1572. (in Chinese)
    [7] 张小庆,吕金洲,刘伟雄,等. 脉冲风洞一体化飞行器测力精度分析[J]. 航空动力学报,2018,33(12): 115-120.

    ZHANG Xiaoqing,LU Jinzhou,LIU Weixiong,et al. Force measurement accuracy analysis of pulse wind tunnel integrated aircraft[J]. Journal of Aerospace Power,2018,33(12): 115-120. (in Chinese)
    [8] 刘勃锴,高宏力,吴颖川,等. 脉冲燃烧风洞新型悬挂式测力系统[J]. 浙江大学学报(自然科学版),2018,52(4): 619-627.

    LIU Bokai,GAO Hongli,WU Yingchuan,et al. A new type of suspended force measurement system for pulse combustion wind tunnel[J]. Journal of Zhejiang University (Natural Science Edition),2018,52(4): 619-627. (in Chinese)
    [9] 吕成涛. 基于频响函数拟合的机械结构动载荷识别[D]. 沈阳: 东北大学, 2019.

    LÜ Chengtao. Dynamic load identification of mechanical structure based on frequency response function fitting[D]. Shenyang: Northeastern University, 2019. (in Chinese)
    [10] 唐秀近. 动态力识别的时域方法[J]. 大连工学院学报,1987(4): 21-28.

    TANG Xiujin. Time-domain method for dynamic force recognition[J]. Journal of Dalian Institute of Technology,1987(4): 21-28. (in Chinese)
    [11] 周盼,张权,率志君,等. 动载荷识别时域方法的研究现状与发展趋势[J]. 噪声与振动控制,2014,34(1): 6-11. doi: 10.3969/j.issn.1006-1335.2014.01.002

    ZHOU Pan,ZHANG Quan,LI Zhijun,et al. Research status and development trend of time-domain methods for dynamic load identification[J]. Noise and Vibration Control,2014,34(1): 6-11. (in Chinese) doi: 10.3969/j.issn.1006-1335.2014.01.002
    [12] 徐志英,廖旭晖. 动态载荷识别及其进展[J]. 常州工学院学报,2006,19(4): 13-18. doi: 10.3969/j.issn.1671-0436.2006.04.004

    XU Zhiying,LIAO Xuhui. Dynamic load identification and its progress[J]. Journal of Changzhou Institute of Technology,2006,19(4): 13-18. (in Chinese) doi: 10.3969/j.issn.1671-0436.2006.04.004
    [13] ZHOU J M,DONG L,GUAN W,et al. Impact load identification of nonlinear structures using deep recurrent neural network[J]. Mechanical Systems and Signal Processing,2019,133: 106292.1-106292.14. doi: 10.1016/j.ymssp.2019.106292
    [14] 王珲玮. 基于神经网络的飞行器力载荷识别算法研究[D]. 杭州: 浙江大学, 2018.

    WANG Hunwei. Research on recognition algorithm of aircraft force and load based on neural network[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [15] 张方,朱德懋. 基于神经网络模型的动载荷识别[J]. 振动工程学报,1997,10(2): 156-162.

    ZHANG Fang,ZHU Demao. Dynamic load identification based on neural network model[J]. Journal of Vibration Engineering,1997,10(2): 156-162. (in Chinese)
    [16] 汪运鹏,杨瑞鑫,聂少军,等. 基于深度学习技术的激波风洞智能测力系统研究[J]. 力学学报,2020,52(5): 1304-1313. doi: 10.6052/0459-1879-20-190

    WANG Yunpeng,YANG Ruixin,NIE Shaojun,et al. Research on shock wave wind tunnel intelligent force measurement system based on deep learning technology[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(5): 1304-1313. (in Chinese) doi: 10.6052/0459-1879-20-190
    [17] LUO C,WANG Y,WANG C,et al. Wave system fitting: a new method for force measurements in shock tunnels with long test duration[J]. Mechanical Systems and Signal Processing,2015,62/63: 296-304. doi: 10.1016/j.ymssp.2015.02.024
    [18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[R]. Las Vegas, NV, US: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
    [19] JIE H,LI S,GANG S,et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8): 2011-2023. doi: 10.1109/TPAMI.2019.2913372
    [20] DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory,2002,41(3): 613-627.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  98
  • HTML浏览量:  65
  • PDF量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回