留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共用支承-双转子系统振动耦合机理及响应特性

宋梓宇 洪杰 王永锋 马艳红

宋梓宇, 洪杰, 王永锋, 等. 共用支承-双转子系统振动耦合机理及响应特性[J]. 航空动力学报, 2023, 38(2):462-472 doi: 10.13224/j.cnki.jasp.20210441
引用本文: 宋梓宇, 洪杰, 王永锋, 等. 共用支承-双转子系统振动耦合机理及响应特性[J]. 航空动力学报, 2023, 38(2):462-472 doi: 10.13224/j.cnki.jasp.20210441
SONG Ziyu, HONG Jie, WANG Yongfeng, et al. Vibration coupling mechanism and response characteristics of shared support dual-rotor system[J]. Journal of Aerospace Power, 2023, 38(2):462-472 doi: 10.13224/j.cnki.jasp.20210441
Citation: SONG Ziyu, HONG Jie, WANG Yongfeng, et al. Vibration coupling mechanism and response characteristics of shared support dual-rotor system[J]. Journal of Aerospace Power, 2023, 38(2):462-472 doi: 10.13224/j.cnki.jasp.20210441

共用支承-双转子系统振动耦合机理及响应特性

doi: 10.13224/j.cnki.jasp.20210441
基金项目: “两机”重大专项基础研究项目(2017-Ⅳ-0011-0048,2017-Ⅶ-0010-0104); 国家自然科学基金(52075018)
详细信息
    作者简介:

    宋梓宇(1996-),男,硕士生,主要研究方向为航空发动机整机结构动力学分析

  • 中图分类号: V232.4

Vibration coupling mechanism and response characteristics of shared support dual-rotor system

  • 摘要:

    针对带有涡轮级间共用承力框架的双转子系统,采用机械阻抗理论定量描述结构质量/刚度分布特征,建立了复杂转子系统振动耦合机理模型,并提出了针对共用支承-双转子系统的振动耦合点确定方法,以及交互激励瞬态响应仿真方法。仿真结果表明:共用支承-双转子系统振动耦合的力学本质,是转子与支承结构振动交互作用下的动力响应耦合,既包括共用支承结构振动基础激励带来的振动耦合力学行为,又包括多转子交互激励下多频率组合的振动响应耦合力学行为。其中基础激励下耦合程度与支承机械阻抗及转子振型有关,转子间交互激励下耦合程度则受被激转子模态振型影响,被激转子刚体模态振型对基础振动敏感,在激励转子作用下更易产生转子交互激励下振动耦合。

     

  • 图 1  典型共用支承-双转子系统结构简图

    Figure 1.  Schematic diagram of typical shared support-dual rotor system

    图 2  共用支承-双转子系统振动耦合机理模型

    Figure 2.  Vibration coupling mechanism model of shared support-dual rotor system

    图 3  共用支承-双转子系统振动耦合点确定思路

    Figure 3.  Vibration coupling point judgment and analysis strategy of shared support-dual rotor system

    图 4  共用支承-双转子系统有限元模型

    Figure 4.  Finite element model of shared support-dual rotor system

    图 5  共用支承-双转子系统Campbell图

    Figure 5.  Campbell diagram of shared support-dual rotor system

    图 6  共用支承-双转子系统潜在振动耦合点模态振型

    Figure 6.  Potential vibration coupling point mode shapes of shared support-dual rotor system

    图 7  共用支承动刚度

    Figure 7.  Dynamic stiffness of shared support

    图 8  共用支承位移传递率

    Figure 8.  Displacement transmissibility of shared support

    图 9  弹性线(HPX-2阶点)

    Figure 9.  Elastic line (point HPX-2)

    图 10  频域位移响应(HPX-2阶点)

    Figure 10.  Frequency domain displacement response (point HPX-2)

    图 11  轴心轨迹及支点动载荷(HPX-2阶点)

    Figure 11.  Shaft orbit and dynamic load of bearing (point HPX-2)

    图 12  弹性线(HPX-3阶点)

    Figure 12.  Elastic line (point HPX-3)

    图 13  频域位移响应(HPX-3阶点)

    Figure 13.  Frequency domain displacement response (point HPX-3)

    图 14  轴心轨迹及支点动载荷(HPX-3阶点)

    Figure 14.  Shaft orbit and dynamic load of bearing (point HPX-3)

    图 15  弹性线(LPX-A点)

    Figure 15.  Elastic line (point LPX-A

    图 16  频域位移响应(LPX-A点)

    Figure 16.  Frequency domain displacement response(point LPX-A

    图 17  轴心轨迹及支点动载荷(LPX-A点)

    Figure 17.  Shaft orbit and dynamic load of bearing (point LPX-A

    图 18  弹性线(HPX-B点)

    Figure 18.  Elastic line (point HPX-B

    图 19  频域位移响应(HPX-B点)

    Figure 19.  Frequency domain displacement response(point HPX-B

    图 20  轴心轨迹及支点动载荷(HPX-B点)

    Figure 20.  Shaft obirt and dynamic load of bearing(point HPX-B

    表  1  共用支承-双转子系统潜在振动耦合点转速

    Table  1.   Potential vibration coupling point speed of shared support-dual rotor system

    振动耦合点高压转速/(r/min)低压转速/(r/min)
    HPX-2阶59512850
    HPX-3阶1621311996
    LPX-A111666737
    HPX-B90664342
    下载: 导出CSV
  • [1] 马艳红,曹冲,李鑫,等. 涡轴发动机涡轮级间支承结构设计关键技术[J]. 航空发动机,2014,40(4): 34-40.

    MA Yanhong,CAO Chong,LI Xin,et al. Key design technology of mid turbine frame for turboshaft engine[J]. Aeroengine,2014,40(4): 34-40. (in Chinese)
    [2] 王强,李维. 前功率输出式涡轴发动机涡轮结构布局改进[J]. 燃气涡轮试验与研究,2010,23(3): 27-30. doi: 10.3969/j.issn.1672-2620.2010.03.007

    WANG Qiang,LI Wei. Improvement of turbine structure for turboshaft engine with front output shaft[J]. Gas Turbine Experiment and Research,2010,23(3): 27-30. (in Chinese) doi: 10.3969/j.issn.1672-2620.2010.03.007
    [3] 刘宝龙,洪杰. 通用核心机转子系统结构设计技术[J]. 振动与冲击,2010,29(增刊1): 58-62.

    LIU Baolong,HONG Jie. Structural design technology of the versatile core rotor system[J]. Journal of Vibration and Shock,2010,29(Suppl.1): 58-62. (in Chinese)
    [4] DUROCHER E, PIETROBON J, NGUYEN L. Mid turbine frame system for gas turbine engine: US0135770A1[P]. 2010-06-03.
    [5] SEDA J F, DUNBAR L W, GLIEBE P R. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors: US0163984A1[P]. 2003-09-04.
    [6] KUMAR K B, NAGENDRA S, SOWA W A. Mid turbine frame: US0030386A1[P]. 2010-06-28.
    [7] KUMAR K B, NAGENDRA S, SOWA W A. Double U design for mid-turbine frame struts: US0134687A1[P]. 2008-06-12.
    [8] CHIANG H W D, HSU C N, JENG W, et al. Turbomachinery dual rotor-bearing system analysis[R]. ASME Paper GT2002-30315, 2002.
    [9] SUN K, WAN Z, SONG H Y, et al. Critical speeds analysis for dual rotor turbofan engine using finite element method[R]. ASME Paper GT2019-91508, 2019.
    [10] GUPTAK,GUPTAK D,ATHREK. Unbalance response of a dual rotor system: theory and experiment[J]. Journal of Vibration and Acoustics,1993,115(4): 427-435. doi: 10.1115/1.2930368
    [11] 蒋云帆,廖明夫,刘永泉,等. 同转/对转双转子系统的动力学特性[J]. 航空动力学报,2013,28(12): 2771-2780.

    JIANG Yunfan,LIAO Mingfu,LIU Yongquan,et al. Dynamic characteristics of co-rotating/counter-rotating dual-rotor system[J]. Journal of Aerospace Power,2013,28(12): 2771-2780. (in Chinese)
    [12] 孙传宗,陈予恕,侯磊. 复杂结构双转子系统的建模及模型缩减[J]. 航空动力学报,2017,32(7): 1747-1753.

    SUN Chuanzong,CHEN Yushu,HOU Lei. Modeling method and reduction of dual-rotor system with complicated structures[J]. Journal of Aerospace Power,2017,32(7): 1747-1753. (in Chinese)
    [13] 王杰, 左彦飞, 江志农, 等. 带中介轴承的双转子系统振动耦合作用评估[EB/OL]. [2021-06-21]. http://kns.cnki.net/kcms/detail/11.1929.V.20200521.1602.014.html.
    [14] 蒋书运,陈照波,须根法,等. 用整体传递矩阵法计算航空发动机整机临界转速特性[J]. 哈尔滨工业大学学报,1998,30(1): 32-35.

    JIANG Shuyun,CHEN Zhaobo,XU Genfa,et al. Analysis of natural frequency characteristics by whole transfer matrix method for tuboengine multi-rotors[J]. Jouranl of Harbin Institute of Technology,1998,30(1): 32-35. (in Chinese)
    [15] 郑旭东,张连祥,刘廷毅. 航空发动机整机振动特性及应变能计算与分析[J]. 航空发动机,2000,26(2): 42-46.

    ZHENG Xudong,ZHANG Lianxiang,LIU Tinyi. Calculation and analysis of vibration characteristics and strain energy of aeroengine[J]. Aeroengine,2000,26(2): 42-46. (in Chinese)
    [16] 陈萌, 马艳红, 刘书国, 等. 航空发动机整机有限元模型转子动力学分析[J]. 北京航空航天大学学报, 2007, 33(9): 1013-1016.

    CHEN Meng, MA Yanhong, LIU Shuguo, et al. Rotor dynamic analysis of whole aero engine models based on finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1013-1016. (in Chinese)
    [17] 张大义,刘烨辉,洪杰,等. 航空发动机整机动力学模型建立与振动特性分析[J]. 推进技术,2015,36(5): 768-773.

    ZHANG Dayi,LIU Yehui,HONG Jie,et al. Investigation on dynamical modeling and vibration characteristics for aero engine[J]. Journal of Propulsion Technology,2015,36(5): 768-773. (in Chinese)
    [18] BONELLO P,HAI P M. Computational studies of the unbalance response of a whole aero-engine model with squeeze-film bearings[J]. Journal of Engineering for Gas Turbines and Power,2010,132(3): 032504.1-032504.7.
    [19] BONELLO P,HAI P M. A computational parametric analysis of the vibration of a three-spool aero-engine under multifrequency unbalance excitation[J]. Journal of Engineering for Gas Turbines and Power,2011,133(7): 072504.1-072504.9.
    [20] 章健,张大义,王永锋,等. 共用支承-转子结构系统振动耦合特性分析[J]. 北京航空航天大学学报,2019,45(9): 1902-1910.

    ZHANG Jian,ZHANG Dayi,WANG Yongfeng,et al. Coupling vibration characteristics analysis of shared support-rotors system[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(9): 1902-1910. (in Chinese)
    [21] 雷冰龙,李超,何康,等. 共用支承-转子系统振动耦合分析及试验[J]. 航空动力学报,2020,35(11): 2293-2305.

    LEI Binglong,LI Chao,HE Kang,et al. Coupling vibration characteristics analysis and experiment of shared support-rotors system[J]. Journal of Aerospace Power,2020,35(11): 2293-2305. (in Chinese)
    [22] 付才高. 航空发动机设计手册: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社, 2000.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  140
  • HTML浏览量:  63
  • PDF量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回