留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态横向过载对固体火箭发动机内弹道的影响

田忠亮 李军伟 贺业 王宁飞

田忠亮, 李军伟, 贺业, 等. 动态横向过载对固体火箭发动机内弹道的影响[J]. 航空动力学报, 2023, 38(2):504-512 doi: 10.13224/j.cnki.jasp.20210442
引用本文: 田忠亮, 李军伟, 贺业, 等. 动态横向过载对固体火箭发动机内弹道的影响[J]. 航空动力学报, 2023, 38(2):504-512 doi: 10.13224/j.cnki.jasp.20210442
TIAN Zhongliang, LI Junwei, HE Ye, et al. Influence of dynamic lateral overload on internal ballistics of solid rocket motor[J]. Journal of Aerospace Power, 2023, 38(2):504-512 doi: 10.13224/j.cnki.jasp.20210442
Citation: TIAN Zhongliang, LI Junwei, HE Ye, et al. Influence of dynamic lateral overload on internal ballistics of solid rocket motor[J]. Journal of Aerospace Power, 2023, 38(2):504-512 doi: 10.13224/j.cnki.jasp.20210442

动态横向过载对固体火箭发动机内弹道的影响

doi: 10.13224/j.cnki.jasp.20210442
详细信息
    作者简介:

    田忠亮(1997-),男,硕士生,主要从事过载下发动机内弹道特性研究

    通讯作者:

    李军伟(1978-),男,副教授、博士生导师,博士,主要从事固体火箭发动机不稳定燃烧、液体微尺度燃烧、固体火箭发动机设计与仿真研究。E-mail:david78lee@sina.com

  • 中图分类号: V435

Influence of dynamic lateral overload on internal ballistics of solid rocket motor

  • 摘要:

    为研究动态横向过载下固体火箭发动机(SRM)的内弹道特性,进行了某三组元复合推进剂在−50g~50g过载加速度下的燃速测量,结合Greatrix多参数模型建立了该推进剂的过载燃速模型;基于此模型,对管型内孔燃烧装药进行了横向过载下的燃面退移模拟,建立了动态横向过载下大长径比发动机的内弹道计算模型。结果表明:过载对该推进剂燃速影响存在一个角度阈值,负角度过载影响很小;瞬间一个横向过载会使燃烧室压强发生跃迁,在100g过载下,压强增加8%左右,过载消失,压强骤降;若受横向过载时间间隔一定,100g过载下导弹后作机动飞行(t=12~15 s)比先机动飞行(t=3~6 s)压强变化幅值小1%,对飞行更有利。

     

  • 图 1  燃烧方位角示意图

    Figure 1.  Schematic diagram of combustion azimuth

    图 2  横向过载下燃面退移示意图

    Figure 2.  Schematic diagram of the retreat of the combustion surface under lateral overload

    图 3  Δt时间内燃面退移情况

    Figure 3.  Combustion surface retreat within Δt

    图 4  t1时刻的燃面求解微元

    Figure 4.  Solution micro-element of the combustion surface at t1

    图 5  内弹道计算流程

    Figure 5.  Internal ballistic calculation process

    图 6  计算装药尺寸图

    Figure 6.  Calculating the size of the grain

    图 7  计算SRM尺寸示意图

    Figure 7.  Schematic diagram of calculating SRM size

    图 8  燃速增加率随过载、方位角大小的变化关系

    Figure 8.  Relationship between the rate of increase in burning rate and the magnitude of overload and azimuth

    图 9  无关性验证

    Figure 9.  Verification of irrelevance

    图 10  50g横向过载下燃面退移示意图

    Figure 10.  Schematic diagram of combustion surface retreat under 50g lateral overload

    图 11  t=8 s时不同过载下的燃面情况

    Figure 11.  Burning surface conditions under different overloads at t=8 s

    图 12  不同过载下燃速最大位置的燃烧肉厚变化情况

    Figure 12.  Changes in burning flesh thickness at the position of maximum burning rate under different overloads

    图 13  不同横向过载下的内弹道计算结果

    Figure 13.  Calculation results of interior ballistics under different lateral overloads

    图 14  绝热层暴露时间和压强增加百分比随过载的变化

    Figure 14.  Changes in the thermal insulation layer exposure time and pressure increase percentage with overload

    图 15  t=12~15 s施加50g横向过载燃面退移情况

    Figure 15.  Combustion surface retreat when 50g lateral overload is applied at t=12~15 s

    图 16  燃烧过程的几个阶段

    Figure 16.  Several stages of the combustion process

    图 17  t=12~15 s施加过载的内弹道特性

    Figure 17.  Interior ballistic characteristics of overload applied in t=12~15 s

    图 18  t=12~15 s施加过载的压强差

    Figure 18.  Pressure difference of overload applied in t=12~15 s

    图 19  两个参数随过载的变化

    Figure 19.  Changes of two parameters with overload

    表  1  推进剂及燃烧产物参数表

    Table  1.   Parameters of propellant and combustion products

    参数数值
    ${\,\rho }_{\mathrm{p} }/(\mathrm{k}\mathrm{g}/{\mathrm{m} }^{3})$1791
    $a/{10}^{-3}\left(\left(\mathrm{m}/\mathrm{s}\right)/\mathrm{M}\mathrm{P}{\mathrm{a} }^{{n} }\right)$3.58
    $ n $0.32
    ${c}_{\mathrm{s} }/\left({\rm{J}}/\left(\mathrm{k}\mathrm{g}/\mathrm{K}\right)\right)$1408
    $\,\mu /{10}^{-4}\left(\mathrm{k}\mathrm{g}/\left(\mathrm{m}/\mathrm{s}\right)\right)$1.03
    $ {\gamma }_{\mathrm{s}} $1.13
    $ {T}_{\mathrm{f}}/\mathrm{K} $2987
    $ {T}_{\mathrm{s}}/\mathrm{K} $912.5
    $ {T}_{\mathrm{i}}/\mathrm{K} $293
    下载: 导出CSV
  • [1] 唐金兰, 刘佩进. 固体火箭发动机原理[M]. 北京: 国防工业出版社, 2012.
    [2] GLICK R L. An analytical study of the effects of radial acceleration upon the combustion mechanism of solid propellant final report [R]. NASA-CR-66218, 1966.
    [3] BAKER K L,CROWE C T,WILLOUGHBY P G. A photographic and analytic study of composite propellant combustion in an acceleration field[J]. Journal of Spacecraft and Rockets,1971,8(4): 310-317.
    [4] NORTHAM G B. Effects of the acceleration vector on transient burning rate of an aluminized solid propellant[J]. Journal of Spacecraft and Rockets,1971,8(11): 1133-1138. doi: 10.2514/3.30357
    [5] FUCHS M D,PERETZ A,TIMANT Y M. Parametric study of acceleration effects on burning rates of metallized solid propellants[J]. Journal of Spacecraft and Rockets,1982,19(6): 539-544. doi: 10.2514/3.62298
    [6] GREATRIX D R,GOTTLIEB J. Model for prediction of normal acceleration augmentation of composite propellant combustion[J]. Mental Retardation,1987,7(2): 3-6.
    [7] GREATRIX D R. Acceleration-based combustion a-augmentation modelling for noncylindrical grain solid rocket motors[R]. San Diego, US: the 31st Joint Propulsion Conference and Exhibit, 1995
    [8] GREATRIX D R. Powered flight the engineering of aerospace propulsion[M]. London, UK: Springer-Verlag, 2012.
    [9] GREATRIX D R. A study of combustion and flow behavior in solid propellant rocket motors[R]. University of Tornoto Institute for Aerospace Studies Report No. 280, 1987.
    [10] 万东,何国强,王占利,等. 低燃速HTPB复合推进剂过载情况下燃烧性能试验研究[J]. 固体火箭技术,2010,33(6): 656-659. doi: 10.3969/j.issn.1006-2793.2010.06.012

    WAN Dong,HE Guoqiang,WANG Zhanli,et al. Study on acceleration-based combustion for low-burning rate HTPB propellant[J]. Journal of Solid Rocket Technology,2010,33(6): 656-659. (in Chinese) doi: 10.3969/j.issn.1006-2793.2010.06.012
    [11] 张为华,曹泰岳,万章吉. 固体火箭发动机旋转对燃速的影响[J]. 航空动力学报,1994,9(1): 67-70. doi: 10.13224/j.cnki.jasp.1994.01.017

    ZHANG Weihua,CAO Taiyue,WAN Zhangji. The effect of solid rocket motor rotation on burning rate[J]. Journal of Aerospace Power,1994,9(1): 67-70. (in Chinese) doi: 10.13224/j.cnki.jasp.1994.01.017
    [12] 曹泰岳,张为华,万章吉,等. 旋转固体火箭发动机内弹道理论与试验研究[J]. 宇航学报,1997,18(1): 2-8.

    CAO Taiyue,ZHANG Weihua,WAN Zhangji,et al. Theoretical and experimental research on interior ballistics of swirling solid rocket motors[J]. Journal of Astronautics,1997,18(1): 2-8. (in Chinese)
    [13] 李桢,王中伟,张为华,等. 横向过载下固体火箭发动机内弹道仿真[J]. 弹箭与制导学报,2005,25(4): 726-728,732. doi: 10.3969/j.issn.1673-9728.2005.04.237

    LI Zhen,WANG Zhongwei,ZHANG Weihua,et al. Internal ballistics simulation of solid rocket motor with lateral overload[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2005,25(4): 726-728,732. (in Chinese) doi: 10.3969/j.issn.1673-9728.2005.04.237
    [14] 曹军,郭颜红,邢强. 高过载条件下固体火箭发动机工作稳定性研究[J]. 航空兵器,2014,51(1): 33-36. doi: 10.3969/j.issn.1673-5048.2014.01.008

    CAO Jun,GUO Yanhong,XING Qiang. Research on the working stabilization of solid rocket motor under high overload[J]. Aero Weaponry,2014,51(1): 33-36. (in Chinese) doi: 10.3969/j.issn.1673-5048.2014.01.008
    [15] 郭颜红,梁晓庚,陈斌. 大过载下固体火箭发动机内弹道计算[J]. 航空动力学报,2008,23(10): 1944-1948.

    GUO Yanhong,LIANG Xiaogeng,CHEN Bin. Internal ballistics calculation of solid rocket motors under high overload[J]. Journal of Aerospace Power,2008,23(10): 1944-1948. (in Chinese)
    [16] 郭颜红,梁晓庚,陈斌. 大过载下固体火箭发动机工作过程仿真的数学模型[J]. 航空兵器,2008,45(1): 21-25.

    GUO Yanhong,LIANG Xiaogeng,CHEN Bin. Working process simulation of solid rocket motor with high acceleration load[J]. Aero Weaponry,2008,45(1): 21-25. (in Chinese)
    [17] 檀叶,何景轩,孙展鹏. 过载条件下固体火箭发动机燃烧稳定性分析[J]. 弹箭与制导学报,2015,35(3): 113-116. doi: 10.15892/j.cnki.djzdxb.2015.03.029

    TAN Ye,HE Jingxuan,SUN Zhanpeng. Combustion stability analysis for solid rocket motor under overload.[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2015,35(3): 113-116. (in Chinese) doi: 10.15892/j.cnki.djzdxb.2015.03.029
    [18] 刘中兵,郜伟伟,张飞. 飞行过载对固体发动机内弹道的影响[J]. 固体火箭技术,2018,41(2): 169-175.

    LIU Zhongbing,GAO Weiwei,ZHANG Fei. Influence of acceleration on internal ballistics of solid motors[J]. Journal of Solid Rocket Technology,2018,41(2): 169-175. (in Chinese)
    [19] 张翔宇,高波,甘晓松,等. 飞行过载对固体火箭发动机不稳定燃烧的影响[J]. 宇航学报,2019,40(8): 972-976. doi: 10.3873/j.issn.1000-1328.2019.08.014

    ZHANG Xiangyu,GAO Bo,GAN Xiaosong,et al. Impacts of flight acceleration on combustion instability of solid rocket motors[J]. Journal of Astronautics,2019,40(8): 972-976. (in Chinese) doi: 10.3873/j.issn.1000-1328.2019.08.014
    [20] 贺业, 李军伟, 田忠亮, 等. 过载条件下高铝粉含量丁羟复合推进剂燃烧性能试验研究[C]//中国宇航学会固体火箭推进专业委员会第38届学术年会论文集. 贵州 遵义: 中国宇航学会, 2021: 494-500.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  127
  • HTML浏览量:  66
  • PDF量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回