留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

后排转子直径对对转螺旋桨气动和声学特性的影响

崔盼望 仝帆 冯和英 陈正武 王大庆

崔盼望,仝帆,冯和英,等.后排转子直径对对转螺旋桨气动和声学特性的影响[J].航空动力学报,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179
引用本文: 崔盼望,仝帆,冯和英,等.后排转子直径对对转螺旋桨气动和声学特性的影响[J].航空动力学报,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179
CUI Panwang,TONG Fan,FENG Heying,et al.Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter⁃rotating proeller[J].Journal of Aerospace Power,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179
Citation: CUI Panwang,TONG Fan,FENG Heying,et al.Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter⁃rotating proeller[J].Journal of Aerospace Power,2022,37(8):1749‑1760. doi: 10.13224/j.cnki.jasp.20220179

后排转子直径对对转螺旋桨气动和声学特性的影响

doi: 10.13224/j.cnki.jasp.20220179
基金项目: 

国家自然科学基金项目 12102451

湖南省教育厅优秀青年基金 20B226

详细信息
    作者简介:

    崔盼望(1996-),男,硕士生,主要从事叶轮机械气动噪声控制研究。

    通讯作者:

    仝帆(1990-),男,高级工程师,博士,主要研究方向为叶轮机械气动声学、仿生降噪技术。E⁃mail:tongfan@cardc.cn

  • 中图分类号: V211.3

Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter⁃rotating proeller

  • 摘要:

    基于非线性谐波法和声类比模型,研究了不同后排转子直径对对转螺旋桨气动特性和噪声的影响规律。首先,利用单排螺旋桨风洞试验结果验证了数值计算方法的可靠性。随后,以某型对转螺旋桨为研究对象,研究了6种具有不同后排转子直径的对转螺旋桨模型。研究发现,对转螺旋桨后排转子直径“裁剪”会降低后排螺旋桨的拉力系数和功率系数,但对效率的影响不明显。随着后排转子直径的减小,前排转子的叶片通过频率下的噪声几乎没有变化,但高阶噪声变化幅度较大。后排转子减小0.25倍直径,后排转子的叶片通过频率下的噪声降低约为9 dB。后排转子直径“裁剪”不仅可以降低后排转子噪声,在一定程度上也可以降低前排转子的噪声。通过叶片“裁剪”,对转螺旋桨气动噪声降低5~6 dB。对转螺旋桨后排转子直径的减小,减弱了对转螺旋桨叶尖涡干涉和尾迹干涉,并减弱了前后排桨叶的势流场干涉,进而降低了对转螺旋桨的噪声辐射。

     

  • 图 1  原始对转螺旋桨布局

    Figure 1.  Layout of original counter⁃rotating propeller

    图 2  后排转子直径示意图

    Figure 2.  Sketch of diameter of rear rotor

    图 6  基准对转螺旋桨气动性能

    Figure 6.  Aerodynamic performance of baseline counter⁃rotating propeller

    图 7  不同后排转子直径下前排转子的气动性能

    Figure 7.  Aerodynamic performance of front rotor under different rear rotor diameters

    图 8  不同后排转子直径下后排转子的气动性能

    Figure 8.  Aerodynamic performance of rear rotor under different rear rotor diameters

    图 9  不同后排转子直径下对转螺旋桨的气动性能

    Figure 9.  Aerodynamic performance of counter⁃rotating propeller under different rear rotor diameters

    图 10  不同后排转子直径下的对转螺旋桨叶尖涡干涉对比

    Figure 10.  Comparison of tip vortex interference of counter⁃rotating propeller under different rear rotor diameters

    图 11  不同后排转子直径下对转螺旋桨纵向截面涡量分布对比

    Figure 11.  Comparison of vorticity distribution in longitudinal section of counter⁃rotating propeller under different rear rotor diameters

    图 12  观察点位置

    Figure 12.  Observer location

    图 13  基准对转螺旋桨噪声特性对比

    Figure 13.  Comparison of acoustic characteristics of baseline counter⁃rotating propeller

    图 14  观察点A的前排转子噪声

    Figure 14.  Noise at observer A radiated from front rotor

    图 15  前排转子的总声压级指向性分布

    Figure 15.  Directivity distribution of total sound pressure level of front rotor

    图 16  观察点A的后排转子噪声

    Figure 16.  Noise at observer A radiated from rear rotor

    图 17  后排转子的总声压级指向性分布

    Figure 17.  Directivity distribution of total sound pressure level of rear rotor

    图 18  后排转子压力面1阶谐波压力幅值分布

    Figure 18.  Distribution of 1st harmonic pressure amplitude on pressure side of rear rotor

    图 19  后排转子吸力面1阶谐波压力幅值分布

    Figure 19.  Distribution of 1st harmonic pressure amplitude on suction side of rear rotor

    图 20  对转螺旋桨总声压级指向性分布

    Figure 20.  Directivity distribution of overall sound pressure level of counter⁃rotating propeller

    图 21  对转螺旋桨总声压级指向性分布

    Figure 21.  Directivity distribution of overall sound pressure level of counter⁃rotating propeller

    表  1  原始对转螺旋桨参数

    Table  1.   Parameters of origin counter⁃rotating propeller

    参数数值
    前排转子后排转子
    叶片数66
    转速/(r/min)1 075-1 075
    直径/m3.953.95
    下载: 导出CSV

    表  2  气动力计算的网格无关性验证

    Table  2.   Mesh independence verification for aerodynamic performance calculation

    网格数前排推力/N后排推力/N前排误差/%后排误差/%
    600万-558.78-618.000.151.44
    1 000万-559.56-625.800.110.19
    1 300万-559.62-627.00
    2 000万-558.30-627.600.230.10
    下载: 导出CSV

    表  3  气动力结果分析对比

    Table  3.   Analysis and comparison of aerodynamic results

    工况前排扭矩/(N·m)后排扭矩/(N·m)前排推力/N后排推力/N
    Aft_D-72.5485.02-559.62-627.00
    Aft_0.75D_40°-71.88101.40-552.24-626.40
    下载: 导出CSV
  • [1] MOENS F,GARDAREIN P.Numerical simulation of the propeller/wing interactions for transport aircraft[R].AIAA⁃2001⁃2404,2001.
    [2] KELLER D,RUDNIK R.Numerical investigation of engine effects on a transport aircraft with circulation control[J].Journal of Aircraft,2015,52(2):421⁃438.
    [3] VAN DEN BORNE P C M,HENGST J V.Investigation of propeller slipstream effects on the Fokker 50 through inflight pressure measurements[R].AIAA⁃90⁃3084,1990.
    [4] KINGAN M J,PARRY A B.Acoustic theory of the many⁃bladed contra⁃rotating propeller:the effects of sweep on noise enhancement and reduction[J].Journal of Sound and Vibration,2020,468:89⁃115.
    [5] PARRY A B,KINGAN M J.Acoustic theory of the many⁃bladed contra⁃rotating propeller:physics of the wake interaction noise critical sources[J].Journal of Fluid Mechanics,2019,880:1⁃12.
    [6] SMITH D J.The sustainable and green engine (SAGE):aircraft engine of the future?[J].The International Journal of Entrepreneurship and Innovation,2016,17(4):256⁃262.
    [7] EKOULE C M.Advanced open rotor far⁃field tone noise[D].Southampton,UK:University of Southampton,2017.
    [8] HAGER R D,VRABEL D.Advanced turboprop project[R].NASA SP⁃495,1988.
    [9] WHITLOW J B,SIEVERS G K.NASA advanced turboprop research and concept validation program[R].NASA TM⁃100891,1988.
    [10] HORVÁTH C,ENVIA E,PODBOY G G.Limitations of phased array beamforming in open rotor noise source imaging[J].AIAA Journal,2014,52(8):1810⁃1817.
    [11] 孙晓峰,胡宗安.桨扇的气动弹性力学和气动声学[J].航空动力学报,1987,2(4):299⁃302.

    SUN Xiaofeng,HU Zongan.On aeroelasticity and aeroacoustics of propfan[J].Journal of Aerospace Power,1987,2(4):299⁃302.(in Chinese)
    [12] 李晓东,孙晓峰,胡宗安,等.考虑飞机舱壁影响的螺旋桨声场时域预测法[J].航空学报,1993,14(11):585⁃591.

    LI Xiaodong,SUN Xiaofeng,HU Zongan,et al.A time domain method for propeller noise prediction including aircraft fuselage effect[J].Acta Aeronautica et Astronautica Sinica,1993,14(11):585⁃591.(in Chinese)
    [13] 刘沛清.空气旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006.
    [14] 严成忠.开式转子发动机[M].北京:航空工业出版社,2016.
    [15] 夏贞锋,杨永.对转开式转子非定常气动干扰特性分析[J].航空动力学报,2014,29(4):835⁃843.

    XIA Zhenfeng,YANG Yong.Characteristic analysis of unsteady aerodynamic interactions of control rotating open rotor[J].Journal of Aerospace Power,2014,29(4):835⁃843.(in Chinese)
    [16] 史文博,李杰.对转螺旋桨流场气动干扰数值模拟[J].航空动力学报,2019,34(4):829⁃837.

    SHI Wenbo,LI Jie.Numerical simulation of contra⁃rotating propeller flowfield aerodynamic interactions[J].Journal of Aerospace Power,2019,34(4):829⁃837.(in Chinese)
    [17] 闫文辉,汤斯佳,王奉明,等.共轴对转螺旋桨的非定常气动干扰[J].航空动力学报,2021,36(7):1398⁃1405.

    YAN Wenhui,TANG Sijia,WANG Fengming,et al.Unsteady aerodynamic interactions of contra rotating propeller[J].Journal of Aerospace Power,2021,36(7):1398⁃1405.(in Chinese)
    [18] PETERS A,SPAKOVSZKY Z S.Rotor interaction noise in counter‑rotating propfan propulsion systems[J].Journal of Turbomachinery,2012,134(1):011002.1⁃011002.12.
    [19] WOODWARD R P.Noise of two high⁃speed model counter⁃rotating propellers at takeoff/approach conditions[J].Journal of Aircraft,1992,29(4):679⁃685.
    [20] KHALID S A,WOJNO J P,LURIE D P.Open rotor designs for low noise and high efficiency[R].ASME Paper GT2013⁃94736,2013.
    [21] ELSON T.Computational aerodynamics for open rotor tip vortex interaction noise prediction[D].Cranfield,UK:Cranfield University,2015.
    [22] KHALID S A,LURIE D,BREEZE⁃STRINGFELLOW A,et al.Open rotor engine aeroacoustic technology final report[R].DOT/FAA/AEE/2014⁃04,2013.
    [23] VANZANTE D.Previous open rotor research in the US[R].Lausanne,Switzerland:European Union X⁃Noise Seminar,2011.
    [24] 周莉,是介,王占学.开式转子发动机研究进展[J].推进技术,2019,40(9):1921⁃1932.

    ZHOU Li,SHI Jie,WANG Zhanxue.Research progress in open rotor engine[J].Journal of Propulsion Technology,2019,40(9):1921⁃1932.(in Chinese)
    [25] DITTMAR J H,STANG D B.Noise reduction for model counter⁃rotating propeller at cruise by reducing aft⁃propeller diameter[R].Indianapolis,US:113th Meeting of the Acoustical Society of America,1987.
    [26] 赵帅,段卓毅,李杰,等.涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J].航空学报,2019,40(4):163⁃174.

    ZHAO Shuai,DUAN Zhuoyi,LI Jie,et al.Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J].Acta Aeronautica et Astronautica Sinica,2019,40(4):163⁃174.(in Chinese)
    [27] 王科雷,祝小平,周洲,等.低雷诺数分布式螺旋桨滑流气动影响[J].航空学报2016,37(9):2669⁃2678.

    WANG Kelei,ZHU Xiaoping,ZHOU Zhou,et al.Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J].Acta Aeronautica et Astronautica Sinica,2016,37(9):2669⁃2678.(in Chinese)
    [28] 许和勇,叶正寅.螺旋桨非定常滑流数值模拟[J].航空动力学报,2011,26(1):148⁃153.

    XU Heyong,YE Zhengyin.Numerical simulation of unsteady propeller slip stream[J].Journal of Aerospace Power,2011,26(1):148⁃153.(in Chinese)
    [29] 杨小川,王运涛,王光学,等.螺旋桨非定常滑流的高效数值模拟研究[J].空气动力学报,2014,32(3):289⁃294.

    YANG Xiaochuan,WANG Yuntao,WANG Guangxue,et al.Numerical simulation of unsteady propeller slipstream[J].Acta Aerodynamic Sinica,2014,32(3):289⁃294.(in Chinese)
    [30] 李鹏,招启军.倾转旋翼典型飞行状态气动特性的CFD分析[J].航空动力学报,2016,31(2):421⁃431.

    LI Peng,ZHAO Qijun.CFD analyses of aerodynamic characteristics of tilt⁃rotor under typical flight conditions[J].Journal of Aerospace Power,2016,31(2):421⁃431.(in Chinese)
    [31] 王顺杰,程玉胜,高鑫.水下对转螺旋桨空化线谱频率预报与数值模拟[J].兵工学报,2013,34(3):310⁃317.

    WANG Shunjie,CHENG Yusheng,GAO Xin.Prediction and numerical simulation of cavitation noise line‑spectrum frequency induced by underwater counter⁃rotation propeller[J].Acta Armamentarii,2013,34(3):310⁃317.(in Chinese)
    [32] 曾赛,杜选民,范威.水下对转桨非空化线谱噪声分析与数值研究[J].兵工学报,2015,36(6):1052⁃1060.

    ZENG Sai,DU Xuanmin,FAN Wei.Numerical simulation and analysis of non⁃cavitation noise line⁃spectrum frequency of underwater counter⁃rotation propeller[J].Acta Armamentarii,2015,36(6):1052⁃1060.(in Chinese)
    [33] 王雷,刘波.非线性谐波法在对转压气机中的校验分析[J].航空动力学报,2012,27(7):1448⁃1455.

    WANG Lei,LIU Bo.Validation of nonlinear harmonic method in dual⁃stage counter⁃rotating compressor[J].Journal of Aerospace Power,2012,27(7):1448⁃1455.(in Chinese)
    [34] 药晓江,董景新,尚婕,等.非线性谐波法在叶轮机械非定常计算中的应用[J].推进技术,2016,37(4):632⁃639.

    YAO Xiaojiang,DONG Jingxin,SHANG Jie,et al.Application of non⁃linear harmonic in turbomarchinery 3D flow field unsteady simulation[J].Journal of Propulsion Technology,2016,37(4):632⁃639.(in Chinese)
    [35] 王晓东,康顺.低速轴流涡轮非定常数值模拟的非线性谐波法[J].工程热物理学报,2009,30(6):949⁃952.

    WANG Xiaodong,KANG Shun.Nonlinear harmonic method in unsteady numerical simulation on a low speed axial turbine[J].Journal of Engineering Thermophysics,2009,30(6):949⁃952.(in Chinese)
    [36] DECONINCK T,CAPRON A,HIRSCH C,et al.Prediction of near⁃ and far⁃field noise generated by contra⁃rotating open rotors[J].International Journal of Aeroacoustics,2012,11(2):219⁃238.
    [37] FERRANTE P,VILMIN S,HIRSCH C,et al.Integrated “CFD⁃Acoustic” computational approach to the simulation of a contra rotating open rotor at angle of attack[R].AIAA⁃2013⁃2242,2013.
    [38] WEI Chunhua,JIAO Lingrui,TONG Fan,et al.Pressure field measurements on large‑scale propeller blades using pressure‑sensitive paint[J].Acta Mechanica Sinica,2022,38(2):121366.1‑121366.11.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  93
  • HTML浏览量:  27
  • PDF量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31

目录

    /

    返回文章
    返回