留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向可靠性设计的发动机材料超高周疲劳强度估计方法

陈新 何玉怀 许巍 孙成奇

陈新,何玉怀,许巍,等.面向可靠性设计的发动机材料超高周疲劳强度估计方法[J].航空动力学报,2022,37(8):1761‑1770. doi: 10.13224/j.cnki.jasp.20220183
引用本文: 陈新,何玉怀,许巍,等.面向可靠性设计的发动机材料超高周疲劳强度估计方法[J].航空动力学报,2022,37(8):1761‑1770. doi: 10.13224/j.cnki.jasp.20220183
CHEN Xin,HE Yuhuai,XU Wei,et al.Very⁃high cycle fatigue strength estimation method for aero⁃engine reliability design[J].Journal of Aerospace Power,2022,37(8):1761‑1770. doi: 10.13224/j.cnki.jasp.20220183
Citation: CHEN Xin,HE Yuhuai,XU Wei,et al.Very⁃high cycle fatigue strength estimation method for aero⁃engine reliability design[J].Journal of Aerospace Power,2022,37(8):1761‑1770. doi: 10.13224/j.cnki.jasp.20220183

面向可靠性设计的发动机材料超高周疲劳强度估计方法

doi: 10.13224/j.cnki.jasp.20220183
基金项目: 

国家科技重大专项(J2019⁃Ⅵ⁃0002) 

国家自然科学基金 91860112

详细信息
    作者简介:

    陈新(1992-),男,工程师,硕士,主要从事航空材料的疲劳试验与表征研究。

    通讯作者:

    许巍(1983-),男,研究员,博士,主要从事航空材料的力学行为研究。E⁃mail:wxu621@163.com

  • 中图分类号: V252.2

Very⁃high cycle fatigue strength estimation method for aero⁃engine reliability design

  • 摘要:

    提出了一种面向可靠性设计的四参数随机疲劳极限模型,可针对小样本数据实现超高周疲劳(VHCF)应力⁃寿命(S⁃N)曲线处理。通过对航空用钛合金常规样本数超高周疲劳数据的拟合分析和对比验证了模型的准确性。同时,以某型航空发动机压气机叶片用TC17钛合金为研究对象,分别对室温(RT)和400 ℃小样本超高周疲劳数据进行了处理,得到了典型置信度和可靠度条件下的超高周疲劳强度估计值。结果表明:本文提出的四参数随机疲劳极限模型,能够通过少量的长寿命区试验数据获得材料超高周范围内发动机设计所需的疲劳强度估计值;相较于常用的升降法,基于本模型进行试验安排可大幅降低68%的试验量,为发动机材料的超高周疲劳强度评价提供方法支持。

     

  • 图 2  TA11钛合金超高周疲劳P⁃S⁃N曲线(常规样本数)

    Figure 2.  P⁃S⁃N curve of TA11 alloy in VHCF region (moderate samples number)

    图 3  旋转弯曲疲劳试样形状和尺寸图(单位:mm)

    Figure 3.  Specimen shape and size for rotating bending fatigue(unit:mm)

    图 5  TC17合金超高周疲劳强度概率分布对比

    Figure 5.  Comparison of probability distribution of very‑high cycle fatigue strength of TC17 alloy

    表  1  TA11超高周疲劳RFL模型参数估计值(常规样本)

    Table  1.   Estimated values of RFL model parameters for TA11 alloy in VHCF rgime (moderate sample number)

    样本数abS0σ
    2614.84-0.770 4471.916.94
    下载: 导出CSV

    表  2  不同估计方法对超高周疲劳强度估计值对比

    Table  2.   Comparison of estimated VHCF strength by different methods

    数据来源超高周(108)疲劳强度估计值
    γ=50%P=50%γ=95%P=50%γ=50%P=99.87%γ=95%P=97.72%γ=95%P=99.87%
    四参数RFL471465414420396
    升降法462451427439376
    相对误差/%-2.08-3.072.894.18-5.20
    下载: 导出CSV

    表  3  TC17合金室温超高周旋转弯曲疲劳试验数据

    Table  3.   Rotating bending fatigue test data of TC17 alloy at room temperature in very‑high cycle fatigue

    应力/MPa循环次数
    7003.75×1044.46×1041.27×105
    6751.33×1051.54×105
    6504.67×1051.83×107
    6251.29×106
    6005.81×1066.95×1064.75×107
    5754.51×107>1.00×108
    550>1.00×108
    下载: 导出CSV

    表  4  TC17合金400 ℃高温超高周旋转弯曲疲劳试验数据

    Table  4.   Rotating bending fatigue test data of TC17 alloy at 400 ℃ in very‑high cycle fatigue

    应力/MPa循环次数
    6005.38×1051.34×107
    5756.19×1063.85×107
    5502.78×1077.37×105
    5407.27×1062.00×107
    5202.62×107>1.00×108
    5006.98×106>1.00×108
    480>1.00×108
    下载: 导出CSV

    表  5  TC17合金基于正态分布四参数RFL模型参数估计

    Table  5.   Parameter estimation of four⁃parameter RFL model based on normal distribution for TC17 alloy

    试验温度样本数nabS0σ
    室温1456.80-8.955526.423.86
    400 ℃13187.9-34.54410.929.18
    下载: 导出CSV

    表  6  TC17合金在给定置信度、可靠度下的超高周疲劳强度估计值(基于正态分布)

    Table  6.   Estimated value of very‑high cycle fatigue strength of TC17 alloy under specified confidence and reliability (based on normal distribution)

    试验温度超高周(108)疲劳强度估计值
    γ=50%,P=50%γ=95%,P=50%γ=50%,P=99.87%γ=95%,P=97.72%γ=95%,P=99.87%
    室温593.7581.4510.9510.3470.9
    400 ℃534.3517.2427.9423.0370.7
    下载: 导出CSV

    表  7  本方法与常规超高周疲劳测试方法成本对比

    Table  7.   Cost comparison between the proposed method and the conventional very⁃high cycle fatigue testing method

    采用方法样本数测试时间/h
    常规的升降法30~453 616
    本方法151 128
    下载: 导出CSV
  • [1] Airaeronautical Systems Center.MIL⁃HTBK⁃1783B engine structural integrity program (ENSIP)[M].Washington:US Air Force,2004.
    [2] 高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2002.
    [3] 洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009,45(7):769⁃780.

    HONG Youshi,ZHAO Aiguo,QIAN Guian.Essential characteristics and influential factors for very⁃high cycle fatigue behavior of metallic materials[J].ACTA Metallurgica Sinica,2009,45(7):769⁃780.(in Chinese)
    [4] 焦泽辉,于慧臣,钟斌,等.TA11 钛合金超高周疲劳行为[J].航空材料学报,2017,37(3):84⁃90.

    JIAO Zehui,YU Huichen,ZHONG Bin,et al.Very high cycle fatigue behavior of TA11 titanium alloy[J].Journal of Aeronautical Materials,2017,37(3):84⁃90.(in Chinese)
    [5] HU Yuanpei,SUN Chengqi,XIE Jijia,et al.Effects of loading frequency and loading type on high⁃cycle and very⁃high⁃cycle fatigue of a high⁃strength steel[J].Materials.2018,11(8):1456.1⁃1456.17.
    [6] XU Wei,ZHAO Yanguang,CHEN Xin,et al.An ultra⁃high frequency vibration⁃based fatigue test and its comparative study of a titanium alloy in the VHCF regime[J].Metals,2020,10(11):1415.1⁃1415.16.
    [7] 许巍,陈新.TC17合金弯曲振动超高周疲劳试验[J].航空发动机,2021,47(2):63⁃67.

    XU Wei,CHEN Xin.Vibration bending fatigue test of TC17 Ti⁃alloy in the very⁃high⁃cycle regime[J].Aeroengine,2021,47(2):63⁃67.(in Chinese)
    [8] LING J,PAN J.A maximum likelihood method for estimating P⁃S⁃N curves[J].International Journal of Fatigue,1997,19(5):415⁃419.
    [9] POLLAK R D,PALAZOTTO A N.A comparison of maximum likelihood models for fatigue strength characterization in materials exhibiting a fatigue limit[J].Probabilistic Engineering Mechanics,2009,24(2):236⁃241.
    [10] 谢金标,姚卫星.建立P⁃S⁃N曲线的双加权最小二乘法[J].实验力学,2010,25(5):611⁃616.

    XIE Jinbiao,YAO Weixing.Double weighted least square method for P⁃S⁃N curve regression[J].Journal of Experimental Mechanics,2010,25(5):611⁃616.(in Chinese)
    [11] 韩希鹏,许超,段作祥,等.高周疲劳曲线的等效应力法[J].航空材料学报,2003,23(3):53⁃57.

    HAN Xipeng,XU Chao,DUAN Zuoxiang,et al.Modified equivalent stress model for high cyclic fatigue curves[J].Journal of Aeronautical Materials,2003,23(3):53⁃57.(in Chinese)
    [12] GAO J,AN Z,LIU B.A new method for obtaining P⁃S⁃N curves under the condition of small sample[J].Journal of Risk and Reliability,2017,231(2):130⁃137.
    [13] BUCAR T,NAGODE M,FAJDIGA M.A neural network approach to describing the scatter of S⁃N curves[J].International Journal of Fatigue,2006,28(4):311⁃323.
    [14] LEONETTI D,MALJAARS J,SNIJDER H H B.Fitting fatigue test data with a novel S⁃N curve using frequentist and Bayesian inference[J].International Journal of Fatigue,2017,105(12):128⁃143.
    [15] 王荣桥,刘飞,胡殿印,等.基于贝叶斯理论的低循环疲劳寿命模型不确定性量化[J].航空学报,2017,38(9):249⁃258.

    WANG Rongqiao,LIU Fei,HU Dianyin,et al.Uncertainty quantification in low cycle fatigue life model based on Bayesian theory[J].Acta Aeronautica et Astronautica Sinica,2017,38(9):249⁃258.(in Chinese)
    [16] ZHONG Bin,HUANG Xinyue,GUO Weibin,et al.Experimental study on residual fatigue life for a nickel‑based powder metallurgy superalloy[C]∥Structural Integrity and Materials Ageing in Extreme Conditions.Shanghai:International symposium on structural integrity,2010:221‑226.
    [17] PASCUAL F G,MEEKER W Q.Estimating fatigue curves with the random fatigue‑limit model[J].Technometrics,1999,41(4):277⁃289.
    [18] PASCUAL F G.Theory for optimal test plans for the random fatigue⁃limit model[J].Technometrics,2003,45(2):130⁃141.
    [19] POLLAK R D,PALAZOTTO A N.A comparison of maximum likelihood models for fatigue strength characterization in materials exhibiting a fatigue limit[J].Probabilistic Engineering Mechanics,2009,24(2):236⁃241.
    [20] ZHU X,SHYAM A,MAYER H,et al.Effects of microstructure and temperature on fatigue behavior of E319⁃T7 cast aluminum alloy in very long life cycles[J].International Journal of Fatigue,Elsevier,2006,28(11):1566⁃1571.
    [21] ENGLER‑PINTO C C,Sr.,LASECKI J V,FRISCH R J,Sr.,et al.Statistical approaches applied to fatigue test data analysis[R].SAE 2005⁃01⁃0802,2005.
    [22] HANAKI S,YAMASHITA M,UCHIDA H,et al.On stochastic evaluation of S⁃N data based on fatigue strength distribution[J].International Journal of Fatigue,Elsevier,2010,32(3):605⁃609.
    [23] 钟斌,马少俊,张仕朝,等.TC11钛合金棒材和锻件的室温设计许用值计算[J].航空动力学报,2020,35(10):2195‑2204.

    ZHONG Bin,MA Shaojun,ZHANG Shichao,et al.Calculation of design allowable values for TC11 titanium bar and forging at room temperature[J].Journal of Aerospace Power,2020,35(1):2195‑2204.(in Chinese)
    [24] 陶春虎,刘庆泉,曹春晓,等.航空用钛合金的失效及其预防[M].北京:国防工业出版社,2002.
    [25] 李全通,刘青川,申景生,等.TC17钛合金超高周弯曲振动疲劳试验[J].航空动力学报,2012,27(3):617⁃622.

    LI Quantong,LIU Qingchuan,SHEN Jingsheng,et al.Experiment on ultra⁃high cycle bending vibration fatigue of titanium alloy TC17[J].Journal of Aerospace Power,2012,27(3):617⁃622.(in Chinese)
    [26] 李全通,通旭东,高星伟,等.基于试片超高周疲劳试验的叶片高周疲劳寿命估算方法[J].航空动力学报,2014,29(10):2471⁃2475.

    LI Quantong,TONG Xudong,GAO Xingwei,et al.Estimation method of blade high cycle fatigue life based on ultra⁃high cycle fatigue test of specimen[J].Journal of Aerospace Power,2014,29(10):2471⁃2475.(in Chinese)
    [27] 高潮,程礼,彭桦,等.20 kHz下TC17钛合金超高周疲劳性能研究[J].航空动力学报,2012,27(4):811⁃816.

    GAO Chao,CHENG Li,PENG Hua,et al.Investigation of ultra⁃high cycle fatigue behavior of TC17 alloy at a frequency of 20 kHz[J].Journal of Aerospace Power,2012,27(4):811⁃816.(in Chinese)
    [28] 李久楷,刘永杰,王清远,等.TC17高温高周旋转弯曲疲劳实验研究[J].四川大学学报(工程科学版),2014,46(2):198⁃202.

    LI Jiukai,LIU Yongjie,WANG Qingyuan,et al.High⁃cycle rotate bending fatigue behavior of TC17 at elevated temperature[J].Journal of Sichuan University (Engineering Science Edition),2014,46(2):198⁃202.(in Chinese)
    [29] 刘汉青,何超,黄志勇,等.TC17合金超高周疲劳裂纹萌生机理[J].金属学报,2017,53(9):1047⁃1054.

    LIU Hanqing,HE Chao,HUANG Zhiyong,et al.Very high cycle fatigue failure mechanism of TC17 alloy[J].ACTA Metallurgica Sinica,2017,53(9):1047⁃1054.(in Chinese)
    [30] 程礼,焦胜博,李全通,等.超高周疲劳与断裂[M].北京:国防工业出版社,2017.
    [31] SCHOLZ F W,STEPHENS M A.K‑sample Anderson⁃Darling tests[J].Journal of the American Statistical Association,1987,82(399):918⁃924.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  105
  • HTML浏览量:  25
  • PDF量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01

目录

    /

    返回文章
    返回