留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型涡扇发动机陶瓷基复合材料涡轮叶片概念设计

石多奇 王振宇 刘长奇 张伟昊 陈敏 杨晓光

石多奇, 王振宇, 刘长奇, 等. 典型涡扇发动机陶瓷基复合材料涡轮叶片概念设计[J]. 航空动力学报, 2023, 38(2):431-444 doi: 10.13224/j.cnki.jasp.20220513
引用本文: 石多奇, 王振宇, 刘长奇, 等. 典型涡扇发动机陶瓷基复合材料涡轮叶片概念设计[J]. 航空动力学报, 2023, 38(2):431-444 doi: 10.13224/j.cnki.jasp.20220513
SHI Duoqi, WANG Zhenyu, LIU Changqi, et al. Conceptual design of ceramic matrix composites turbine blade for typical turbofan engine[J]. Journal of Aerospace Power, 2023, 38(2):431-444 doi: 10.13224/j.cnki.jasp.20220513
Citation: SHI Duoqi, WANG Zhenyu, LIU Changqi, et al. Conceptual design of ceramic matrix composites turbine blade for typical turbofan engine[J]. Journal of Aerospace Power, 2023, 38(2):431-444 doi: 10.13224/j.cnki.jasp.20220513

典型涡扇发动机陶瓷基复合材料涡轮叶片概念设计

doi: 10.13224/j.cnki.jasp.20220513
基金项目: 国家自然科学基金(51772009,51911530201)
详细信息
    作者简介:

    石多奇(1975-),男,教授、博士生导师,博士,主要从事航空发动机结构强度和寿命可靠性、高温材料力学行为与本构理论等方面的研究

    通讯作者:

    刘长奇(1996-),男,博士,主要从事陶瓷基复合材料力学与结构设计,航空发动机结构强度和寿命可靠性等方面的研究。E-mail:lcqturbocae@buaa.edu.cn

  • 中图分类号: V232.4

Conceptual design of ceramic matrix composites turbine blade for typical turbofan engine

  • 摘要:

    为了推动先进航空发动机陶瓷基复合材料(CMCs)涡轮叶片设计技术进步,以典型涡扇发动机基准性能参数为原始数据,按照涡轮叶片正向设计流程,从气动设计,到结构设计,再到变形及强度分析,梳理出以材料强度为约束,发动机推力和耗油率为输入值,涡轮叶片叶身模型为结果的概念设计方法。设计了一种陶瓷基复合材料低压涡轮转子叶片,该叶片实心无冷却,设计工况下的气动性能、强度和振动特性仿真结果满足设计要求。安全储备系数可达1.8,涡轮盘外载预估减少50%,验证了陶瓷基复合材料用于先进航空发动机热端部件的可行性。涡轮效率提高0.98%~1.17%表明陶瓷基复合材料具有提升先进航空发动机热端部件性能的潜力。

     

  • 图 1  涡轮叶片概念设计流程

    Figure 1.  Turbine blade conceptual design process

    图 2  1370 K 下KD- Ⅰ SiC/SiC试验件拉伸应力-应变曲线[31]

    Figure 2.  Tensile stress-strain curves of KD- Ⅰ SiC/SiC composite at 1370 K[31]

    图 3  涡轮级叶中速度三角形计算程序框图

    Figure 3.  Block diagram of velocity triangle calculation at average position in turbine

    图 4  涡轮级叶根和叶尖速度三角形计算程序框图

    Figure 4.  Block diagram of velocity triangle calculation at root and tip in turbine

    图 5  速度三角形设计结果示意图

    Figure 5.  Results schematic diagram of velocity triangle design

    图 6  叶型设计典型截面(单位:mm)

    Figure 6.  Typical section for blade profile design (unit: mm)

    图 7  叶型设计几何参数计算程序框图

    Figure 7.  Block diagram of blade profile geometric parameters calculation program

    图 8  截面Ⅳ叶型

    Figure 8.  Blade profile at section Ⅳ

    图 9  截面Ⅳ叶栅静压分布

    Figure 9.  Static pressure distribution of cascade at section Ⅳ

    图 10  截面Ⅳ叶栅相对速度分布

    Figure 10.  Relative velocity distribution of cascade at section Ⅳ

    图 11  CMCs涡轮叶片叶身模型

    Figure 11.  Model of CMCs turbine blade body

    图 12  径向位移分布

    Figure 12.  Radial displacement distribution

    图 13  径向应力分布

    Figure 13.  Radial stress distribution

    图 14  叶根尾缘径向应力分布

    Figure 14.  Radial stress distribution at blade root trailing edge

    图 15  共振转速图

    Figure 15.  Resonance speed diagram

    表  1  设计点计算结果

    Table  1.   Calculation results of design point

    参数验算值基准值[3]
    中间状态推力/kN105.5105.5
    中间耗油率/(kg/(daN·h))0.83710.837
    换算空气流量/(kg/s)124.02126.50
    总压比27.169526.1
    涵道比0.31120.3
    涡轮前温度/K1802.91860
    下载: 导出CSV

    表  2  低压涡轮级性能参数值

    Table  2.   Performance parameters of low pressure turbine

    参数导向器进口转子出口
    流量/(kg/s)96.1096.10
    总温/K1379.331181.41
    静温/K1347.151137.49
    总压/Pa960877458286
    静压/Pa867043390233
    绝对速度/(m/s)283.56327.06
    焓/(J/kg)1237530992312
    转速/(r/min)11000
    出口面积/m20.25
    下载: 导出CSV

    表  3  转子叶片进出口径向尺寸

    Table  3.   Radial dimension of inlet and outlet rotor blade

    参数进口出口
    内径/m0.3150.294
    外径/m0.4120.414
    叶片长度/cm9.712.0
    轮毂比0.760.71
    截面面积/m20.220.27
    下载: 导出CSV

    表  4  叶中处速度三角形设计值

    Table  4.   Value of velocity triangle design at average position

    参数进口出口
    $ {c}_{\mathrm{a}} $288.99297.23
    $ {c}_{\mathrm{u}} $543.1741.51
    $ c $615.27300.11
    $ {w}_{\mathrm{u}} $124.84449.09
    $ w $314.81539.61
    $ \alpha $28.0282.05
    $\,\beta$66.6433.67
    下载: 导出CSV

    表  5  截面Ⅳ叶型几何参数

    Table  5.   Blade profile geometric parameters at section Ⅳ

    参数数值
    相对栅距0.66
    相对厚度0.09
    进口攻角/(°)−1
    叶栅出口角/(°)32.10
    弦长/mm40.91
    栅距/mm27.20
    叶型安装角/(°)119.75
    叶片宽度/mm35.80
    最大厚度/mm3.70
    进气边小圆半径/mm0.77
    排气边小圆半径/mm0.44
    进气边楔角/(°)16
    排气边楔角/(°)4
    喉道宽度/mm14.50
    几何进口角/(°)65.64
    几何出口角/(°)32.88
    叶背出口弯折角/(°)9
    下载: 导出CSV

    表  6  三维四向编织某KD- Ⅰ SiC/SiC复合材料参数[30]

    Table  6.   Material parameters of three dimensional-four directional braided the KD- Ⅰ SiC/SiC composites[30]

    参数数值
    弹性模量/GPa$ {E}_{1} $89
    $ {E}_{2} $89
    $ {E}_{3} $107
    泊松比$ {v}_{12} $0.27
    $ {v}_{13} $0.24
    $ {v}_{23} $0.24
    切变模量/GPa$ {G}_{12} $$ 38.60 $
    $ {G}_{13} $38.20
    $ {G}_{23} $38.20
    热膨胀系数/10−6 K−1$ {\alpha }_{1} $2.40
    $ {\alpha }_{2} $2.40
    $ {\alpha }_{3} $2.50
    密度/(g/cm32.00
    下载: 导出CSV

    表  7  设计截面的叶片表面温度

    Table  7.   Blade surface temperature of design sections

    径向位置 r/cm叶片表面温度 T/K
    29.391240
    31.471245
    33.891252
    36.321259
    38.741268
    40.971276
    41.371278
    下载: 导出CSV

    表  8  叶片前5阶振型

    Table  8.   The first five mode shapes of blade

    固有频率/Hz振型振型图
    1644(1阶)1阶弯曲振型
    2503(2阶)1阶扭转振型
    4871(3阶)1阶弯曲振型
    5386(4阶)2阶扭转振型
    7006(5阶)弯扭复合振型
    下载: 导出CSV
  • [1] 晏武英. 美国新一代国家级军用航空动力预研计划分析[J]. 航空动力,2018(2): 35-39.

    YAN Wuying. Analysis of U. S. new generation military aeronautical propulsion research program[J]. Aerospace Power,2018(2): 35-39. (in Chinese)
    [2] 刘大响,程荣辉. 世界航空动力技术的现状及发展动向[J]. 北京航空航天大学学报,2002,28(5): 490-496. doi: 10.3969/j.issn.1001-5965.2002.05.002

    LIU Daxiang,CHENG Ronghui. Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics,2002,28(5): 490-496. (in Chinese) doi: 10.3969/j.issn.1001-5965.2002.05.002
    [3] 陈仲光,张志舒,李德旺,等. F119发动机总体性能特点分析与评估[J]. 航空科学技术,2013(3): 39-42. doi: 10.3969/j.issn.1007-5453.2013.03.012

    CHEN Zhongguang,ZHANG Zhishu,LI Dewang,et al. Analysis and evaluation of F119 engine overall performance[J]. Aeronautics Science and Technology,2013(3): 39-42. (in Chinese) doi: 10.3969/j.issn.1007-5453.2013.03.012
    [4] PENG Y,LI J,PENG X,et al. Interfacial microstructure evolution and formation process of the joints prepared by diffusion bonding on DD6 nickel-based single crystal superalloy[J]. Journal of Materials Research and Technology,2020,9(6): 16317-16328. doi: 10.1016/j.jmrt.2020.11.083
    [5] 刘海龙,张大旭,祁荷音,等. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报,2020,54(10): 1074-1083. doi: 10.16183/j.cnki.jsjtu.2019.274

    LIU Hailong,ZHANG Daxu,QI Heyin,et al. Tensile damage evolution of plain weave SiC/SiC composites based on in-situ X-ray CT tests[J]. Journal of Shanghai Jiao Tong University,2020,54(10): 1074-1083. (in Chinese) doi: 10.16183/j.cnki.jsjtu.2019.274
    [6] WANG X,GAO X,ZHANG Z,et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review[J]. Journal of the European Ceramic Society,2021,41(9): 4671-4688. doi: 10.1016/j.jeurceramsoc.2021.03.051
    [7] 张立同,成来飞,徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术,2003(1): 24-32. doi: 10.3969/j.issn.1671-833X.2003.01.009

    ZHANG Litong,CHENG Laifei,XU Yongdong. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology,2003(1): 24-32. (in Chinese) doi: 10.3969/j.issn.1671-833X.2003.01.009
    [8] 邹豪,王宇,刘刚,等. 碳化硅纤维增韧碳化硅CMCs的发展现状及其在航空发动机上的应用[J]. 航空制造技术,2017(15): 76-84, 91.

    ZHOU Hao,WANG Yu,ZHAO Long,et al. Development situation and application of SiC/SiC ceramic matrix composites in aeroengine[J]. Aeronautical Manufacturing Technology,2017(15): 76-84, 91. (in Chinese)
    [9] BANSAL N P, LAMON J. Ceramic matrix composites: materials, modeling and technology[M]. New York: John Wiley and Sons Incorporation, 2015.
    [10] General Electric (GE) Aerospace. GE aviation moving to apply ceramic matrix composites to the heart of future engines[EB/OL].[2022-04-26]. https://www.geaerospace.com/press-release/other-news-information/ge-aviation-moving-apply-ceramic-matrix-composites-heart.
    [11] WATANABE F, NAKAMURA T, MIZOKAMI Y. Design and testing for ceramic matrix composite turbine vane[R]. ASME Paper GT 2017-63264, 2017.
    [12] General Electric (GE) Aerospace. GE successfully tests world’s first rotating ceramic matrix composite material for Next-Gen combat engine[EB/OL].[2022-04-26]. https://www.geaerospace.com/press-release/military-engines/ge-successfully-tests-worlds-first-rotating-ceramic-matrix-composite.
    [13] 石多奇, 程震, 杨晓光, 等. 一种CMCs涡轮转子叶片: CN108119188B [P]. 2020-04-17.
    [14] 程震. 连续增韧CMCs强度与结构设计[D]. 北京: 北京航空航天大学, 2021.

    CHEN Zhen. Continuous fiber reinforced ceramic matrix composite strength and structure design[D]. Beijing: Beihang University, 2021. (in Chinese)
    [15] CHAMPASAK P,PANAGANT N,PHOLDEE N,et al. Aircraft conceptual design using metaheuristic-based reliability optimization[J]. Aerospace Science and Technology,2022,129: 107803.1-107803.13. doi: 10.1016/j.ast.2022.107803
    [16] YADAV M,MISRA A,MALHOTRA A,et al. Design and analysis of a high-pressure turbine blade in a jet engine using advanced materials[J]. Materials Today: Proceedings,2020,25: 639-645. doi: 10.1016/j.matpr.2019.07.530
    [17] ALSHAMMARI F,ELASHMAWY M,HAMIDA M B B. Effects of working fluid type on powertrain performance and turbine design using experimental data of a 7.25ℓ heavy-duty diesel engine[J]. Energy Conversion and Management,2021,231: 113828.1-113828.20.
    [18] QIAN Z,LI G. Structure design and optimization of a gas turbine blade[J]. Journal of Physics ,2022,2252(1): 12025.1-12025.7.
    [19] DHIMOLE V K,CHEN Y,SERRAO P,et al. A design feasibility study of a turbine blade disc interface (dovetail) made by four-directional braided ceramic matrix composite (SiC/SiC)[J]. International Journal of Aeronautical and Space Sciences,2022,23(1): 66-76. doi: 10.1007/s42405-021-00421-8
    [20] 杨天媛. CMCs金属榫连结构试验件设计与分析[D]. 北京: 北京航空航天大学, 2018.

    YANG Tianyuan. Design and analysis of CMCs/metal dovetail joint test specimens[D]. Beijing: Beihang University, 2018. (in Chinese)
    [21] 陈光. F119发动机的设计特点[J]. 航空发动机,2000,26(1): 21-29.

    CHEN Guang. Design features of F119 engine[J]. Aeroengine,2000,26(1): 21-29. (in Chinese)
    [22] BOYLE R,GNANASELVAM P,PARIKH A H,et al. Design of stress constrained SiC/SiC ceramic matrix composite turbine blades[J]. Journal of Engineering for Gas Turbines Power,2021,143(5): 051013.1-051013.9.
    [23] 柯别列夫, С. З, 吉洪诺夫, 等. 航空发动机涡轮计算: 气动计算及叶片造型[M]. 施永立, 译. 北京: 国防工业出版社, 1978.
    [24] 罗尔斯·罗伊斯公司. 斯贝MK202发动机应力标准: EGD-3[M]. 丁爱祥, 吴君可, 译. 北京: 国际航空编辑部, 1979.
    [25] 杨晓光,胡晓安,石多奇,等. 概念设计时影响涡轮转子叶片强度的关键因素[J]. 航空动力学报,2012,27(10): 2314-2320. doi: 10.13224/j.cnki.jasp.2012.10.016

    YANG Xiaoguang,HU Xiaoan,SHI Duoqi,et al. Strength considerations for concept design of turbine blade[J]. Journal of Aerospace Power,2012,27(10): 2314-2320. (in Chinese) doi: 10.13224/j.cnki.jasp.2012.10.016
    [26] XIONG X,QUAN D,DAI P,et al. Tensile behavior of nickel-base single-crystal superalloy DD6[J]. Materials Science and Engineering:A,2015,636: 608-612. doi: 10.1016/j.msea.2015.03.125
    [27] 罗磊. 涡轮高效冷却结构设计方法及换热机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    LUO Lei. On the design method and heat transfer mechanism of high efficiency cooling structure in a gas turbine[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [28] 《航空发动机设计用材料数据手册》编委会编. 航空发动机设计用材料数据手册[M]. 北京: 航空工业出版社, 2010.
    [29] 张盛. 编织陶瓷基复合材料力学行为的多尺度分析[D]. 南京: 南京航空航天大学, 2018.

    ZHANG Sheng. Analysis of the mechanical behavior for braided ceramic matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [30] 程震,石多奇,景鑫,等. 三维四向编织CMCs改进模型及刚度预报[J]. 复合材料学报,2016,33(6): 1287-1296.

    CHEN Zhen,SHI Duoqi,JING Xin,et al. Numerical prediction of tensile properties and damage evolution of three dimensional-four directional braided CMCs[J]. Acta Materiae Compositae Sinica,2016,33(6): 1287-1296. (in Chinese)
    [31] SHI D,JING X,YANG X. Low cycle fatigue behavior of a 3D braided KD-I fiber reinforced ceramic matrix composite for coated and uncoated specimens at 1 100 ℃ and 1 300 ℃[J]. Materials Science and Engineering: A,2015,631: 38-44. doi: 10.1016/j.msea.2015.01.078
    [32] LIU C,SHI D,JING X,et al. Multiscale investigation on fatigue properties and damage of a 3D braided SiC/SiC+PyC/SiC composites in the full stress range at 1 300 ℃[J]. Journal of the European Ceramic Society,2022,42(4): 1208-1218. doi: 10.1016/j.jeurceramsoc.2021.11.045
    [33] ZHU S,MIZUNO M,KAGAWA Y,et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review[J]. Composites Science and Technology,1999,59: 833-851. doi: 10.1016/S0266-3538(99)00014-7
    [34] 刘长奇. 编织SiC/SiC复合材料结构强度和寿命分析方法[D]. 北京: 北京航空航天大学, 2022.

    LIU Changqi. Analysis methods for structural strength and service life of braided SiC/SiC composites[D]. Beijing: Beihang University, 2022. (in Chinese)
    [35] 方祥军,刘思永,王屏,等. 大扩张通道超声高载荷对转涡轮动叶三维设计方法研究[J]. 航空学报,2007,28(1): 25-31. doi: 10.3321/j.issn:1000-6893.2007.01.004

    FANG Xiangjun,LIU Siyong,WANG Ping,et al. Research of 3D design method for rotor of supersonic high loaded contra-rotating turbine with large expansile meridional channel[J]. Acta Aeronautica et Astronautica Sinica,2007,28(1): 25-31. (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.01.004
    [36] 张清,郝勇,张大义,等. 大涵道比涡扇发动机低压涡轮间隙分析与设计[J]. 航空发动机,2014,40(2): 56-60. doi: 10.13477/j.cnki.aeroengine.2014.02.011

    ZHANG Qing,HAO Yong,ZHANG Dayi,et al. Analysis and design of low pressure turbine tip clearance for high bypass ratio turbofan engine[J]. Aeroengine,2014,40(2): 56-60. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2014.02.011
    [37] 谷雪花,郝晟淳,张东海,等. 叶尖间隙对涡轮性能影响的试验研究[J]. 航空发动机,2020,46(4): 78-81. doi: 10.13477/j.cnki.aeroengine.2020.04.014

    GU Xuehua,HAO Shengchun,ZHANG Donghai,et al. Experimental study on influence of tip clearance on turbine performance[J]. Aeroengine,2020,46(4): 78-81. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2020.04.014
    [38] 林垲,高庆,黄维娜. Ⅰ级涡轮叶片振动特性研究[J]. 燃气涡轮试验与研究,2002,15(3): 28-32, 46. doi: 10.3969/j.issn.1672-2620.2002.03.008

    LIN Kai,GAO Qing,HUANG Weina. Study on vibration characteristics of 1st stage turbine rotor blade[J]. Gas Turbine Experiment and Research,2002,15(3): 28-32, 46. (in Chinese) doi: 10.3969/j.issn.1672-2620.2002.03.008
    [39] 欧阳德,付小平,宋兆泓. 某发动机二级涡轮叶片共振断裂可靠性分析[J]. 燃气涡轮试验与研究,1997,10(4): 39-41.

    OUYANG De,FU Xiaoping,SONG Zhaohong. Reliable analysis of resonant fracture of the 2nd stage turbine blade of an engine[J]. Gas Turbine Experiment and Research,1997,10(4): 39-41. (in Chinese)
    [40] 赵陈伟,毛军逵,屠泽灿,等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报,2021,42(6): 136-161.

    ZHAO Chenwei,MAO Junkui,TU Zecan,et al. Thermal analysis methods for high-temperature ceramic matrix composite components: review and prospect[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 136-161. (in Chinese)
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  380
  • HTML浏览量:  232
  • PDF量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 网络出版日期:  2022-12-06

目录

    /

    返回文章
    返回