2010, 25(9): 2139-2147.
摘要:
针对现有最小二乘支持向量机(LS-SVM)稀疏性不足的难题,提出一种稀疏化策略,应用此方法建立了航空发动机动态过程模型.在对原始样本预求解过程中,该策略使用改进Gram-Schmidt正交化算法对非线性映射矩阵实施递归分解,同时以阈值监督输出向量的残差化过程,从而优选训练样本,降低样本规模,节省内存,提高LS-SVM学习速度.仿真表明,基于优选样本的学习模型较之其他训练样本学习模型提高了回归精度和速度,验证了方法的可行性;基于实际试验数据建立的航空发动机动态过程模型在类似过程参数预测以及性能递推预估仿真表明,高压转子相对转速误差低于0.2%,低压转子相对转速误差低于0.35%,涡轮后燃气温度误差小于3.5℃,满足控制与仿真的需要.